
RINGNECK SOM-PX30-uQ7
Power efficient System-on-Module with Quad-Core ARM
featuring the Rockchip PX30 application processor

USER MANUAL

Document revision: v1.5.0
Issue date: Apr 13, 2024





Contents

1 Introduction 1
1.1 Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 First Steps 2
2.1 Insert RINGNECK SOM-PX30-uQ7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Mount the Fan (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Using the DEVKIT 4
3.1 HAIKOU CB-MINI-ITX Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Control Buttons and Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 CPU Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Boot Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 USB Serial Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 RS-232 and RS-485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.8 TTL UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.9 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.10 SD-Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.11 USB Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.12 Display and Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.13 RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.14 SPI and I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.15 GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.16 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.17 CAN Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.18 CTRL I/O Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.19 MISC Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.20 JTAG Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Software Overview 19
4.1 Supported Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Compiling Linux Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Debian image guide 20
5.1 Prepare the host PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Compile the ATF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Compile U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Compile the Linux kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Building the debos image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Building a Yocto image 25
6.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 BSP meta layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Extended meta layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Deploy a disk image 32
7.1 Deploy on SD Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Deploy on internal eMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Wifi 34
8.1 Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Connecting to a Wifi network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Flashing the wifi firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 Serial Number & MAC Address 36
9.1 Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page i



9.2 MAC Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 Mule Companion Controller 37
10.1 Companion Controller 1 (STM32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.2 Companion Controller 2 (ATtiny) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11 Phosh graphical shell 40
11.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11.2 Known issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12 Hardware Guide 42
12.1 Q7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12.2 Q7 Connector Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.3 Signal Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12.4 On-board Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.5 Wifi and Bluetooth module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.6 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.7 Using Qseven Signals as GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.8 Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12.9 Mechanical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13 Known limitations 56

14 Contact 57

15 Revision History 58

v1.5.0
Page ii



1 Introduction
Congratulations for acquiring CHERRY Embedded Solutions new product, combining best-in-class perfor-
mance with a rich set of peripherals.

Note: The latest version of this manual and related resources can always be found on our website at the
following address:

https://embedded.cherry.de/som-product/ringneck-som-px30-uq7/

1.1 Device Overview

PX30 is a high-performance Quad-core application processor designed for personal mobile internet device
and other digital multimedia applications. PX30 is a 64-bit low power processor with Quad Core ARM Cortex
A35 and dual core Mali G31 GPU. These 64-bit capable ARMv8 Cortex A35 processors support both the ARM
Crypographic Extension (e.g.forwire-rate AES encryption) and AdvSIMD vector processing. The ability to receive
camera sensor input through a MIPI-CSI interface and to process the resulting imagestream in real-time with
the powerful ARM processor cores enables vision and image-analytics applications.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 1

https://embedded.cherry.de/som-product/ringneck-som-px30-uq7/


2 First Steps
This chapter provides instructions for getting the RINGNECK SOM-PX30-uQ7 DEVKIT running after opening the
box.

2.1 Insert RINGNECK SOM-PX30-uQ7

Insert RINGNECK SOM-PX30-uQ7 module at a 30-degree angle into HAIKOU CB-MINI-ITX Qseven connector.
Once fully inserted, push it down until it rests on the standoffs and check alignment of the mounting holes.

Note: The module springs back into the 30-degree angle once released. This is expected, and alignment will
be kept. The module will be secured into place.

Fig. 2.1: Module mounting

2.2 Mount the Fan (optional)

The fan is only necessary in exceptionally high ambient temperatures. Under normal conditions RINGNECK
SOM-PX30-uQ7 operates passively cooled.

2.3 Power Up

For bootloader configuration and Linux console, the serial interface can be used. Connect either aMicro-USB or
RS-232 cable to the corresponding port. Select the correct UART with UART selector slider (1). For Micro-USB,
the slider has to be in the right position to route the default console (UART0) to the USB-UART bridge. For
RS-232, the slider has to be in the left position and the protocol slider (2) has to be in the RS-232 position (see
Fig. 2.2 Serial console and boot configuration ).

Connect the power supply and verify the sliders are in the position Normal Boot (3) and Normally Off (4).
Press the Power Button (5) to power HAIKOU CB-MINI-ITX. You will see the boot progress and later on a login
prompt on the serial interface. If the display is connected, video output will follow shortly after.

v1.5.0
Page 2



PowerUSB UART
RS232

1

2

3 4 5

Fig. 2.2: Serial console and boot configuration

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 3



3 Using the DEVKIT
This chapter provides instructions for using HAIKOU CB-MINI-ITX, such as booting and how to configure and
use I/O peripherals (e.g. serial console, Ethernet).

3.1 HAIKOU CB-MINI-ITX Overview

An overview of the available connectors and devices on HAIKOU CB-MINI-ITX is shown below.

Note: RINGNECK SOM-PX30-uQ7 does not support HDMI and PCIe x4 (they are shown with a * in the next
figure).

v1.5.0
Page 4



UPDI
SPI+I2C+1-wire

GPIOMisc I/O

CTRL I/OSMBus

CAN

Buzzer 

I2S
FAN

Battery

SD - Card 
Slot 

D
is

p
la

y 
C

o
n

n
e

ct
o

rP
C

Ie
 x

4
 *

+
1

2
 P

o
w

e
r

A
u

d
io

E
th

e
rn

e
t

2
x 

U
S

B
 2

.0

U
S

B
 2

.0
 

U
S

B
 U

A
R

T

U
S

B
 O

T
G

H
D

M
I 
*

R
S

2
3

2

P
o

w
e

r

R
e

se
t

W
a

ke

S
le

e
p

B
a

tlo
w

P
o

w
e

r 
M

o
d

e

B
O

O
T

 S
W

L
ID

 S
W

Fig. 3.1: HAIKOU CB-MINI-ITX with RINGNECK SOM-PX30-uQ7
(connectors marked with a * are not supported)

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 5



3.2 Power Supply

HAIKOU CB-MINI-ITX can operate with a single 12V DC power supply.

Fig. 3.2: 12V Power connector

Power can be controlled manually from the board using the Power control buttons and switches, located on the
lower right side of the board (see Section 3.1 HAIKOU CB-MINI-ITX Overview).

Depending on the setting of Power Mode (Normally On / Normally Off) switch, HAIKOU CB-MINI-ITX will
boot as soon as it receives power.

3.3 Control Buttons and Switches

The control buttons (see Fig. 3.1 HAIKOU CB-MINI-ITX with RINGNECK SOM-PX30-uQ7) provide the following
functionality:

• Power toggles the module power supply.

• Reset triggers a module reset.

• Batlow, Sleep and Wake are routed to GPIOs on the uQ7 module.

Several slider switches are located on the lower left:

• LID SW is routed to a GPIO on the module, simulates lid open/close.

• Power Mode (Normally On / Normally Off), as described above, sets the state after power loss.

• BOOT SW (BIOS Disable / Normal Boot) forces SD card boot or the normal boot order, respectively.

3.4 CPU Fan

Operation in high environmental temperatures may require a CPU fan. The fan connector is located next to the
bottom right corner of the Q7 expansion area.

v1.5.0
Page 6



GND
+12V

FAN_TACHON
FAN_PW

M
OUT

Fig. 3.3: Fan connector

Note: The fan is only necessary in high ambient temperatures. Under normal conditions RINGNECK
SOM-PX30-uQ7 operates passively cooled.

3.5 Boot Order

The used boot order of RINGNECK SOM-PX30-uQ7 module depends on the value of the BIOS_DISABLE# signal.
On HAIKOU CB-MINI-ITX this signal can be set using a slider switch (BOOT SW), with the two positions labeled
Normal Boot, and BIOS Disable.

As shown in the table below, the BIOS Disable position disables the eMMC storage device:

Normal Boot BIOS Disable
1 eMMC storage SD card
2 SD card USB loader
3 USB loader

If no bootloader is found on any storage device, RINGNECK SOM-PX30-uQ7 will go into USB loadermode, show-
ing up as a USB device on the USB-OTG port.

The electrical state of the BIOS_DISABLE# signal for both slider positions is shown below:

Slider Position BIOS_DISABLE# signal
Normal Boot Floating (on-module pull-up to 3.3V)
BIOS Disable GND

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 7



3.6 USB Serial Console

HAIKOU CB-MINI-ITX contains an on-board Silicon Labs CP2102N USB-serial converter. Connect the included
Micro-USB cable to the Micro-USB jack labeled USB-UART Bridge:

Fig. 3.4: USB UART

The serial converter does not require additional drivers on Windows and Linux.

For macOS, drivers are available from Silicon Labs: https://www.silabs.com/products/development-tools/
software/usb-to-uart-bridge-vcp-drivers

RINGNECK SOM-PX30-uQ7 has two external UARTs:

• UART0 is, by default, used for the serial console for interactive login.

• UART1 is unused by default and can be freely used for machine-to-machine communications or other
purposes.

The switch UART0 / UART1 cross-switches UART0 and UART1 between the RS232 / RS485 jack and the on-
board USB-serial converter:

Switch Position RS232 / RS485 jack connected to: USB-serial converter connected to:
UART0 UART0 (interactive console) UART1
UART1 UART1 UART0 (interactive console)

For interactive login through the USB-serial converter, make sure the switch is on the UART1 position.

Note: UART1 is the name of the UART exposed on HAIKOU CB-MINI-ITX. It is actually connected to the UART5
controller on the PX30 SoC.

Incidentially, UART0 on HAIKOU CB-MINI-ITX is connected to the UART0 controller on the PX30 SoC.

Picocom can be used to connect via the serial line (assuming the USB-serial converter is USB0):

picocom -b 115200 /dev/ttyUSB0

Note: Make sure to disable software flow-control (XON/XOFF). Otherwise serial input may not be recognized.

After system boot-up, the login console appears on the terminal:

v1.5.0
Page 8

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers


px30-uq7 login:

You can log in as root with password root.

3.7 RS-232 and RS-485

To connect via RS-232 or RS-485, connect to the RS232 / RS485 jack on HAIKOU CB-MINI-ITX.

UART1

RS232 
RS485

FULL/HALF 
DUPLEX

UART0

Fig. 3.5: RS-232 connector

The switch labeled RS-232 / RS-485 selects between RS-232 and RS-485 mode on the jack.

In RS-485 mode, the switch labeled Full Duplex / Half Duplex selects full- or half-duplex mode, respec-
tively. It has no effect in RS-232 mode, which is always full-duplex.

3.8 TTL UART

UART0 and UART1 are also available through the pin headers P12 UART0 and P30 UART1 next to the RS232 /

RS485 jack. The signal level is 3.3V.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 9



3.9 Ethernet

RINGNECK SOM-PX30-uQ7 has built-in Fast Ethernet (100Mbit/s) routed to a standard RJ-45 jack on HAIKOU
CB-MINI-ITX.

Fig. 3.6: Ethernet jack

The SD card that is shipped with the EVK is configured to automatically retrieve an IP address via DHCP and
provides SSH login on port 22.

3.10 SD-Card

RINGNECK SOM-PX30-uQ7 supports UHS SD cards andmaximumwriting speed on the SD card is 50MB/s. The
practical writing and reading speeds depend on the capabilities of the inserted SD card.

Fig. 3.7: SD card reader

v1.5.0
Page 10



3.11 USB Interfaces

RINGNECK SOM-PX30-uQ7 provides four USB ports:

• 1x USB 2.0 OTG

• 3x USB 2.0 Host

Fig. 3.8: USB 2.0 OTG port (dual-role port: can be used as a host or device interface)

Fig. 3.9: USB 2.0 host ports

3.11.1 Connecting an External USB Drive

To connect a USB drive, plug it into one of the USB ports. The system should recognize the drive immediately.
Check the kernel log to find the device name:

dmesg -f

You will be able to mount its partitions (assuming mapping to /dev/sdb1):

mkdir /mnt/usb1

mount /dev/sdb1 /mnt/usb1

ls /mnt/usb1

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 11



3.12 Display and Camera

RINGNECK SOM-PX30-uQ7 supports display output on the LVDS A interface and the camera on the LVDS B
interface.

For MIPI-DSI and MIPI-CSI, the Qseven LVDS pins are used. Those pins are routed to the Video connector.
This expansion slot uses a PCIe connector asmechanical connection, which allows easy development of adapter
boards for various different display types.

Qseven Port Function Alternate Function
LVDS A MIPI-DSI LVDS
LVDS B MIPI-CSI

NC
GND

LVDS_A3_N
LVDS_A3_P

GND
GND

LVDS_A2_N

GND
LVDS_A2_P

GND
LVDS_A1_N
LVDS_A1_P

GND
NC
GND

LVDS_A0_N
LVDS_A0_P

LVDS_A_CLK_N
GND

LVDS_A_CLK_P
GND

GND
LVDS_B_CLK_N
LVDS_A_CLK_P
GND
LVDS_B3_N
LVDS_B3_P
GND

LVDS_B2_N
GND

LVDS_B2_P
GND
GND
LVDS_B1_N
LVDS_B1_P
GND
DP_HPD#

LVDS_B0_N

GND
LVDS_B0_P

NC

GND

LVDS_PEN
3V3
3V3

LVDS_BLT_CTRL
LVDS_BLEN

NC
GPO0

12V
GND

12V
GND 12V

LVDS_BLC_DAT
NC
LVDS_BLC_CLK
3V3
GND
LVDS_DID_DAT
LVDS_DID_CLK

12V
GND

12V

Fig. 3.10: Video connector pinout

The kernel devicetree defines the used display configuration. Example device trees for various output configu-
rations are provided with the Board Support Package.

To specify which devicetree should be loaded on boot, edit the configuration variable FDT in the file /boot/

extlinux/extlinux.conf. For example to enable support for DEVKIT ADDON CAM-TS-A01 write:

FDT /boot/px30-ringneck-haikou-video-demo.dtb

Note: For systems using FIT images (such is the case for Yocto images), the kernel variable should be edited
instead:

kernel /fitImage#conf-rockchip_px30-ringneck-haikou-video-demo.dtb

Filename Functions
px30-ringneck-haikou.dtb
px30-ringneck-haikou-video-demo.dtb Touchscreen display, camera

Requires Video Demo adapter

v1.5.0
Page 12



3.13 RTC

RINGNECK SOM-PX30-uQ7 contains a real-time clock (RTC) on-module.

Note: This functionality is implemented in the optional Mule companion controller (see Section 12.4.4 Com-
panion Controller 1 and Section 12.4.5 Companion Controller 2).

The RTC is read by the kernel on boot-up and used to set the system clock.

To check the RTC value, use hwclock:

$ hwclock

Thu 22 Oct 2022 01:49:20 PM CEST -0.826662 seconds

The RTC will be automatically set to the system clock on shutdown, so you can set the system clock using the
date command and reboot to update the RTC:

date ^--set 2022-10-22

date ^--set 04:12:33

You can also update the RTC immediately, again with hwclock:

hwclock -w

3.14 SPI and I2C

SPI and I2C interfaces are both available on the pin header labeled SPI+I2C+1-Wire. RINGNECK
SOM-PX30-uQ7 does not support 1-Wire.

Additional I2C buses are available on the SMBUS header. Note that SMB_DAT, SMB_CLK, SMB_ALERT# are not
supported by RINGNECK SOM-PX30-uQ7 (shown in thin font in Fig. 3.12).

GND

I2C_DAT

1-W
ire

SPIM
ISO

SPICS1#

3V3

I2C_CLK

SPIM
OSI

SPICLK

SPICS0#

Fig. 3.11: I2C and SPI header

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 13



GND

BLC_DAT

BLC_CLK

DID_DAT

DID_CLK

3V3

3V_VCC_RTC

SM
B_CLK

SM
B_DAT

SM
B_ALERT#

Fig. 3.12: SMBUS header

For I2C, the i2c-tools package is available in Debian:

apt-get install i2c-tools

3.14.1 Linux I2C Bus Numbering

Linux identifies each I2C bus by a bus number. The table below shows the mapping between Q7 names, Linux
bus number and HAIKOU CB-MINI-ITX header.

Q7 signals Linux bus # Header(s) Label on
Header

GP2_I2C_DAT/LVDS_DID_DAT
GP2_I2C_CLK/LVDS_DID_CLK

1 SMBus & Video con-

nector

DID_DAT

DID_CLK

GP0_I2C_DAT
GP0_I2C_CLK

2 SPI+I2C+1-Wire I2C_DAT

I2C_CLK

eDP0_HPD#/LVDS_BLC_DAT
eDP1_HPD#/LVDS_BLC_CLK

3 SMBus & Video con-

nector

BLC_DAT

BLC_CLK

The other I2C buses (as reported by i2cdetect -l) are internal to the module and not routed to the Q7 con-
nector.

3.15 GPIOs

Eight GPIOs are provided on the pin header labeled GPIO.

The location on HAIKOU CB-MINI-ITX is displayed below:

v1.5.0
Page 14



GND

GPIO6

GPIO5

GPIO3

GPIO1

3V3

GPIO7

GPIO4

GPIO2

GPIO0

Fig. 3.13: GPIO header

The GPIO numbers printed on the board refer to numbers used in the Qseven specification. They are different
than the ones used in Linux via /sys/class/gpio.

The mapping is shown in the following table:

Q7 signal CPU pin Linux GPIO #
GPIO0 GPIO3_C6 118
GPIO1 GPIO3_D0 120
GPIO2 GPIO3_C7 119
GPIO3 GPIO3_D1 121
GPIO4 GPIO3_C0 112
GPIO5 GPIO3_A2 98
GPIO6 GPIO3_A1 97
GPIO7 GPIO2_B6 78

To calculate the Linux GPIO # for CPU pins that are not listed in this table, use the following formula:

n = (block_number * 32) + (sub_block_number * 8) + index

Where:

• block_number … index of the block number

• sub_block_number … the alphabetical index of the block name, minus 1

• index … the pin number within the block

Example:

GPIO3_C6 ^-> (3 * 32) + (2 * 8) + 6 = 118

To enable a GPIO, write the Linux GPIO # to the special export file:

$ echo 118 > /sys/class/gpio/export

$ cat /sys/class/gpio/gpio118/direction

in

$ cat /sys/class/gpio/gpio118/value

0

To set the direction to output, write out in the GPIO’s direction file:

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 15



echo out > /sys/class/gpio/gpio118/direction

echo 1 > /sys/class/gpio/gpio118/value

The GPIO will be set to a value of 1 (high at 3.3V).

3.16 Audio

HAIKOU CB-MINI-ITX provides two audio connectors for input and output. Line-in is on top and Headphones

is on bottom of the audio connector.

Note: The codec on HAIKOU CB-MINI-ITX only supports a sample rate 48kHz. This restriction only applies to
this specific codec on HAIKOU CB-MINI-ITX.

The I2S bus on RINGNECK SOM-PX30-uQ7 module supports a sample rate up to 192kHz.

Fig. 3.14: Audio input/output port

Additionally, an expansion connector for I2S audio is available on the bottom row of the carrier board:

3V3
GND

I2S_CLK
I2S_SDO
I2S_DAT

3V3_LDO

I2S_RST#

I2S_WS

I2S_SDI

I2S_CLK

Fig. 3.15: Connecting to the audio expansion connector

v1.5.0
Page 16



3.17 CAN Bus

HAIKOU CB-MINI-ITX provides a CAN connector on the bottom row.

CAN high level
CAN low

 level
GND

Fig. 3.16: CAN header

Note: CAN feature is only available on RINGNECK SOM-PX30-uQ7 with an STM32, see (Section 12.4.4 Com-
panion Controller 1).

3.18 CTRL I/O Connector

HAIKOU CB-MINI-ITX provides signals for watchdog trigger in- and output, SoM PMIC power-on input, reset
and external display power enable.

GND

RSTBTN#

PW
RBTN#

USB67_OC#

W
DTRIG#

3V3

LVDS_PPEN

SUS_S3

SUS_S5

W
DOUT

Fig. 3.17: CTRL I/O header

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 17



3.19 MISC Connector

HAIKOU CB-MINI-ITX provides signals for thermal overheat of external hardware and the processor, utility
signals for SD and GPIO0.

GND

BLT_CTRL

BLEN

SDIO_PW
R#

THRM
#

3V3

PCIE_W
ALE#

GPIO0

SDIOW
P

THRM
_TRIP#

Fig. 3.18: MISC header

3.20 JTAG Connector

The board provides UPDI signals on the JTAG connector. RINGNECK SOM-PX30-uQ7 does not support JTAG,
but the ATtiny (see Section 12.4.5 Companion Controller 2) can be flashed over JTAG connector pins.

NC
TDO

3V3

NCNC

TDI

NC

TM
S

TCK

TRST#
3V3
GND
GND
GND
GND
GND
GND
GND
GND
GND

Fig. 3.19: JTAG header

JTAG header Function
TDI UPDI-TX
TDO UPDI-RX

v1.5.0
Page 18



4 Software Overview

This chapter provides instructions for compiling and deploying the BSP (Board Support Package) software to
RINGNECK SOM-PX30-uQ7.

4.1 Supported Distributions

Two of the most popular embedded systems distributions are supported. The following chapters describe how
to build a disk image for each of them:

• Debian: Section 5 Debian image guide

• Yocto: Section 6 Building a Yocto image

4.2 Compiling Linux Applications

The easiest option is to compile your applications directly on a module running Debian. Install the gcc package
and related utilities and you are good to go:

sudo apt-get install build-essential

The second option is to cross-compile your applications on a host PC. The compiler that was installed in Section
5.1 Prepare the host PC is suitable.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 19



5 Debian image guide
As opposed to Yocto, Debian does not provide a completely integrated build experience by itself. Linux kernel
and U-Boot have to be compiled manually and copied to the appropriate directory to be picked up by Debian
build system.

This chapter will go through all neccessary steps, finally building a complete image using the debos Debian
image builder. The result will be a fully-functional Debian system.

Alternatively, prebuilt images can be downloaded from https://downloads.embedded.cherry.de/ringneck/.

At the time of writing this document, the following Debian image variants are available for RINGNECK
SOM-PX30-uQ7:

• Debian 12 Bookworm,

• Debian 12 Bookworm with Phosh graphical shell.

Note: While Debian is a great tool for fast prototyping of your product, it is highly recommended to use a
distribution/image tailored to your need. This can be achieved by Yocto (Section 6 Building a Yocto image) or
Buildroot for example.

5.1 Prepare the host PC

The debos Debian OS Builder is only available for Debian and Debian-based distributions (like Ubuntu). This
chapter assumes you use Debian or a Debian-based distribution as the host PC.

Install packages for compiling the parts and the complete image:

sudo apt-get -y install debos git build-essential gcc-aarch64-linux-gnu make bison bc flex \

libssl-dev device-tree-compiler python3-dev python3-pkg-resources swig fdisk bmap-tools

As debos internally uses kvm virtualization, your user must be a member of the kvm group:

sudo adduser "$(id -un)" kvm

Log out and back for the change to take affect. Then verify that kvm is listed in your groups:

id -Gn

5.2 Compile the ATF

Get the source code and compile the Arm Trusted Firmware as follows:

# Set up cross-compilation

export ARCH=arm64

export CROSS_COMPILE=aarch64-linux-gnu-

# Download the source code

git clone https:^//git.trustedfirmware.org/TF-A/trusted-firmware-a.git

(

cd trusted-firmware-a ^|| return

# Use most recent release

LAST_ANNOTATED_V_TAG_FROM_MASTER=$(git describe ^--abbrev=0 ^--match "v?*^.?*^.?*")

(continues on next page)

v1.5.0
Page 20

https://downloads.embedded.cherry.de/ringneck/


(continued from previous page)
# Find all tags from different branches that contain that last tag reachable from master.

# This will return lts tags, of which we want to take the latest available.

# If no LTS tag, take the latest non-rc tag reachable from master.

LAST_LTS_TAG=$(git tag ^--sort -version:refname ^--contains "$LAST_ANNOTATED_V_TAG_FROM_MASTER" 'lts-

→˓v?*^.?*^.?*' | head -1)

TAG=${LAST_LTS_TAG:-$LAST_ANNOTATED_V_TAG_FROM_MASTER}

git checkout "$TAG"

TF_LDFLAGS=""

# Fix for aarch64-linux-gnu-ld 2.39+ and TF-A prior to v2.9

# Fix available in commit 1f49db5f25cd ("feat(build): add support for new binutils versions")

if "${CROSS_COMPILE}ld" ^-no-warn-rwx-segments -v >/dev/null 2>&1; then

TF_LDFLAGS="-z noexecstack ^--no-warn-rwx-segments"

fi

# Compile

TF_LDFLAGS="$TF_LDFLAGS" make PLAT=px30 bl31

)

# Make the resulting file available to later steps

export BL31="$PWD/trusted-firmware-a/build/px30/release/bl31/bl31.elf"

This step should take under 1 minute total.

5.3 Compile U-Boot

Note: The variable BL31must be already set as described in Section 5.2 Compile the ATF .

Get the source code and compile the U-Boot bootloader as follows:

# Set up cross-compilation

export ARCH=arm64

export CROSS_COMPILE=aarch64-linux-gnu-

# Download the source code

git clone https:^//git.embedded.cherry.de/ringneck-u-boot.git

(

cd ringneck-u-boot ^|| return

# Compile

make ringneck-px30_defconfig

make -j"$(nproc)"

)

# Make the resulting file available to later steps

export RINGNECK_UBOOT_DIR="$PWD/ringneck-u-boot"

This step should take about 1 minute total.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 21



5.4 Compile the Linux kernel

Get the source code and compile the Linux kernel as follows:

# Set up cross-compilation

export ARCH=arm64

export CROSS_COMPILE=aarch64-linux-gnu-

# Download the source code

git clone https:^//git.embedded.cherry.de/ringneck-linux.git

(

cd ringneck-linux ^|| return

# Compile

make ringneck-px30_defconfig

make -j"$(nproc)"

^## Make sure there are no modules from older builds, otherwise may pollute rootfs

^## if using debos-recipes instructions.

rm ^--recursive ^--force overlay/

make -j"$(nproc)" INSTALL_MOD_PATH=overlay modules_install

)

# Make the resulting files available to later steps

export RINGNECK_LINUX_DIR="$PWD/ringneck-linux"

The time required for this step heavily depends on your internet connection and CPU power. On a quad-core
2.9GHz machine with an 1Gb/s internet connection, it takes about 20 minutes total.

Warning: It is essential the kernel modules installed on the system are built from the exact same sources
as the kernel Image itself or the modules will fail to be detected by the kernel.

Note: One can install new modules without needing to recompile the debos image entirely by running the
following command:

export IP=10.11.12.13 # set to the IP address of the device

rsync ^--delete ^--recursive overlay/lib/modules/ root@"$IP":/lib/modules

Update the kernel Image if there was some change made to it so that it will find the new modules upon reboot.

Reboot for the new modules to be loaded.

5.5 Building the debos image

5.5.1 Prepare required components

Note: The variables RINGNECK_UBOOT_DIR and RINGNECK_LINUX_DIR must be already set as described in
Section 5.3 Compile U-Boot and Section 5.4 Compile the Linux kernel, respectively.

Get the source code for the debos recipe and copy necessary components built in previous steps:

# Download the source code

git clone https:^//git.embedded.cherry.de/debos-recipes.git

cd debos-recipes ^|| return

# Copy Linux binaries into the ``ringneck`` folder

(continues on next page)

v1.5.0
Page 22



(continued from previous page)
cp "$RINGNECK_LINUX_DIR"/arch/arm64/boot/Image ringneck/overlay/boot/

^## Match dtb and dtbo

cp "$RINGNECK_LINUX_DIR"/arch/arm64/boot/dts/rockchip/px30-ringneck*.dtb* ringneck/overlay/boot

rm ^--recursive ^--force ringneck/overlay/lib/modules

mkdir ^--parents ringneck/overlay/lib/modules

cp ^--archive "$RINGNECK_LINUX_DIR"/overlay/lib/modules/ ringneck/overlay/lib/

^## Remove known problematic symlinks as debos would dereference them

rm ringneck/overlay/lib/modules/*/build

rm ringneck/overlay/lib/modules/*/source

# Copy U-Boot binaries into the ``ringneck`` folder

cp "$RINGNECK_UBOOT_DIR"/u-boot-rockchip.bin ringneck

5.5.2 Build a complete image

Different variants of Debian images are available. You can build the one of your choice or all of them. Default
variant is Debian 12 Bookworm. Other variants can be chosen by setting the debos_variant environment
variable when running build.sh.

Depending on your host PC and internet connection, this step should complete in about 5-10 minutes.

The resulting image is a file called sdcard-ringneck-debos-VARIANT.XXX.YYY.img and, for convenience, the
symlink sdcard-ringneck-debos-VARIANT.img that always points to the latest version.

Debian 12 Bookworm

# Build the image

build_board=ringneck ./build.sh

# Or: Build the image using podman (For host PCs not using Debian)

# build_board=ringneck debos_host=podman ./build.sh

#

# Make the resulting image available to later steps

export SDCARD_IMG="$PWD/sdcard-ringneck-debos-bookworm.img"

Note: When running inside a virtual machine that does not support nesting, you may get an error like this:

open /dev/kvm: no such file or directory

In this case, prepend debos_host=chroot to the build.sh command, resulting in:

debos_host=chroot build_board=ringneck ./build.sh

The debos_host=chrootmode uses sudo internally as it requires root permissions.

Debian 12 Bookworm with Phosh graphical shell

This image variant is targeted for the Haikou-Video-Demo. Please see the DEVKIT ADDON CAM-TS-A01 User
Manual for more information about the DEVKIT ADDON CAM-TS-A01.

More details about the Phosh graphical shell can be found in the Phosh graphical shell section.

# Build the image

build_board=ringneck debos_variant=bookworm-phosh ./build.sh

# Or: Build the image using podman (For host PCs not using Debian)

# build_board=ringneck debos_variant=bookworm-phosh debos_host=podman ./build.sh

(continues on next page)

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 23

https://embedded.cherry.de/product/development-kit/
https://embedded.cherry.de/product/development-kit/


(continued from previous page)
# Make the resulting image available to later steps

export SDCARD_IMG="$PWD/sdcard-ringneck-debos-bookworm-phosh.img"

Note: When running inside a virtual machine that does not support nesting, you may get an error like this:

open /dev/kvm: no such file or directory

In this case, prepend debos_host=chroot to the build.sh command, resulting in:

debos_host=chroot build_board=ringneck ./build.sh

The debos_host=chrootmode uses sudo internally as it requires root permissions.

v1.5.0
Page 24



6 Building a Yocto image
The Yocto Project is an open-source project that helps building Linux-based distributions, mainly for embeded-
ded products. CHERRY provides aminimal BSP layer to allow building Yocto images for the company’smodules.
An extended layer is also provided for a less bare experience, see instructions in Section 6.3 Extended meta
layer. Upon request, access can be given to a more featureful “demonstration” layer which provides hardware
and software validation scripts as well as demo applications.

This user guide does not aim at getting the user familiar with development with the Yocto Project but rather
help them setup their build environment to create a basic Yocto image that can be used on one of CHERRY
Embedded Solutions modules.

The Yocto project provides an open source Linux build framework, which allows to create customized build
environments for embedded systems.

Yocto consists of the following parts:

• The Yocto Project tools,

• Reference Linux distribution (Poky),

• Build system (co-maintained with OpenEmbedded),

There exists extensive documentation for the Yocto Project and BitBake.

The Yocto Project releases a new version twice a year and some versions are maintained for a longer time when
marked as LTS (Long-Term Support). Such is the case of Kirkstone (4.0), supported until at least April 2024.
CHERRY highly recommends to use LTS versions and update to a newer version once its support has reached
end-of-life, to benefit from bug fixes, security fixes, miscellaneous improvements and additional features.

6.1 Prerequisites

While the Yocto Project supports many different build systems, CHERRY currently only tests building on Debian
11 (Bullseye).

The required packages for Debian are listed in the documentation and can be installed with the following com-
mand:

sudo apt-get install -y ^--no-install-recommends gawk wget git diffstat unzip \

texinfo gcc build-essential chrpath socat cpio python3 python3-pip python3-venv \

python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 \

libegl1-mesa libsdl1.2-dev xterm python3-subunit mesa-common-dev zstd \

liblz4-tool file

6.2 BSP meta layer

The Yocto Project BSP meta layer can be found at https://git.embedded.cherry.de/yocto-layers/
meta-theobroma-systems-bsp.git/.

It contains the minimal configuration and recipe append files (bbappend) necessary to build a minimal working
image. It is meant to be a base upon which to build and thus many tools are purposefully missing.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 25

https://www.yoctoproject.org/
https://docs.yoctoproject.org/kirkstone
https://docs.yoctoproject.org/bitbake/2.0
https://docs.yoctoproject.org/kirkstone/ref-manual/system-requirements.html#supported-linux-distributions
https://docs.yoctoproject.org/kirkstone/ref-manual/system-requirements.html#ubuntu-and-debian
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git/
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git/


6.2.1 Initial setup

Clone the BSP meta layer and its dependencies from a new directory called yocto:

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git -b kirkstone

git clone https:^//git.yoctoproject.org/poky -b kirkstone-4.0.10

git clone https:^//git.yoctoproject.org/meta-arm -b yocto-4.0.2

git clone https:^//git.yoctoproject.org/meta-rockchip -b kirkstone

git clone https:^//git.openembedded.org/meta-openembedded -b kirkstone

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

└── poky

Note: It is essential that the Yocto layers are checked out on a branch that supports the same release as the
others, otherwise theremay be some unexpected issues. With the aforementioned instructions, the layers have
been checked out to a branch supporting the Yocto Project Kirkstone (4.0) release.

One can check if a branch supports a release by looking into conf/layer.conf and look for the LAY-

ERSERIES_COMPAT_* variable. All layers should have the same one in common, here “kirkstone”.

6.2.2 Initializing build environment

Once the layers have been properly cloned in their appropriate branch, the build environment needs to be
initialized. This can be done by running the following command:

# shellcheck disable=SC3046,SC1091

source poky/oe-init-build-env build

This will initialize the build environment by making the bitbake build tool available in the current shell and
creating a build directory where temporary and final build artifacts will be stored.

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── build

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

└── poky

The first time the command is run, it’ll create a new build directory called build and add the appropriate
configuration files. On the later runs, if the directory still exists, the command will only configure the terminal
environment and not change anything in the build directory. This makes it perfectly safe to run the command
multiple times, from different terminals for example.

Note: Once the current terminal is closed or a new one is opened, this command should be re-executed to be
able to interact again with the Yocto Project tools.

v1.5.0
Page 26



The Yocto Project then needs to be configured to include layers to find new recipes or configuration files, which
is essential to build new pieces of software or compile for a specific hardware target system.

This can be done with the bitbake-layers tool:

bitbake-layers add-layer ^../meta-arm/meta-arm-toolchain

bitbake-layers add-layer ^../meta-arm/meta-arm

bitbake-layers add-layer ^../meta-rockchip

bitbake-layers add-layer ^../meta-openembedded/meta-oe

bitbake-layers add-layer ^../meta-openembedded/meta-python

bitbake-layers add-layer ^../meta-theobroma-systems-bsp

6.2.3 Building a minimal image

To build a bootable artifact, BitBake will be called with the specified machine and target image:

MACHINE="ringneck-haikou" bitbake core-image-minimal

Note: Technically speaking, the MACHINE variable could be set in build/conf/local.conf file once and for all.
If possible, CHERRY recommends passing the variable explicitly in the command directly as this makes it more
visible to the user and also allows to easily build for multiple machines without modifying a file in-between.

The build process can take several hours depending on the capabilities of the build machine and the user’s
Internet connection.

Note: If the Bitbake process needs to be stopped for any reason, a SIGINT (Ctrl + c) signal can be sent once.
Bitbake will gracefully close down upon reception of this signal. This graceful shutdown can take a lot of time
depending on the tasks that are currently being executed. It is highly recommended to not send this signal
more than once, failing to do so may hinder next Bitbake commands.

The artifacts can be found after some time in build/tmp/deploy/images/ringneck-haikou/ di-
rectory. A flashable image is one whose extension is .wic, e.g. core-image-minimal-ring-

neck-haikou-20221021134027.rootfs.wic.

Make the resulting image available for later steps:

export SDCARD_IMG="$PWD/build/tmp/deploy/images/ringneck-haikou/core-image-minimal-ringneck-haikou.

→˓wic"

6.2.4 Building with kas

kas is a setup tool for Bitbake-based projects, such as the Yocto Project, which aims to replace the commands
listed above for a simpler, more automated, setup and creation of images.

CHERRY provides a kas configuration file kas-theobroma.yml in the BSP meta layer for convenience.

kas can be installed on the build machine with the following command:

sudo apt-get install -y ^--no-install-recommends kas

Note: It is also available as a Python package and installable with:

python3 -m venv venv

# shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 27

https://github.com/siemens/kas
https://pypi.org/project/kas/


The Section 6.2.1 Initial setup and Section 6.2.2 Initializing build environment can then be replaced by the fol-
lowing two commands:

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git -b kirkstone

kas checkout meta-theobroma-systems-bsp/kas-theobroma.yml

The Section 6.2.3 Building a minimal image can now be replaced with:

KAS_MACHINE="ringneck-haikou" kas build meta-theobroma-systems-bsp/kas-theobroma.yml

Note: kas is also available in an OCI container form on GitHub container registry.

It is still recommended to install kas through pip but then use its kas-container wrapper script to start the
container properly. E.g. to replace the last command to build an image with kas one can call this instead:

python3 -m venv venv

# shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

KAS_IMAGE_VERSION="4.0" KAS_MACHINE="ringneck-haikou" kas-container build meta-theobroma-systems-

→˓bsp/kas-theobroma.yml

6.3 Extended meta layer

The Yocto Project extended layer can be found at https://git.embedded.cherry.de/yocto-layers/
meta-theobroma-systems-extended.git/.

In addition to the minimal features, this layer includes the network manager, and many more features will be
added soon.

6.3.1 Initial setup

Clone the Extended layer and its dependencies from a new directory called yocto:

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git -b‿

→˓kirkstone

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git -b kirkstone

git clone https:^//git.yoctoproject.org/poky -b kirkstone-4.0.10

git clone https:^//git.yoctoproject.org/meta-arm -b yocto-4.0.2

git clone https:^//git.yoctoproject.org/meta-rockchip -b kirkstone

git clone https:^//git.openembedded.org/meta-openembedded -b kirkstone

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

├── meta-theobroma-systems-extended

└── poky

v1.5.0
Page 28

https://ghcr.io/siemens/kas/kas
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git/
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git/


Note: It is essential that the Yocto layers are checked out on a branch that supports the same release as the
others, otherwise theremay be some unexpected issues. With the aforementioned instructions, the layers have
been checked out to a branch supporting the Yocto Project Kirkstone (4.0) release.

One can check if a branch supports a release by looking into conf/layer.conf and look for the LAY-

ERSERIES_COMPAT_* variable. All layers should have the same one in common, here “kirkstone”.

6.3.2 Initializing build environment

Once the layers have been properly cloned in their appropriate branch, the build environment needs to be
initialized. This can be done by running the following command:

# shellcheck disable=SC3046,SC1091

source poky/oe-init-build-env build

This will initialize the build environment by making the bitbake build tool available in the current shell and
creating a build directory where temporary and final build artifacts will be stored.

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── build

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

├── meta-theobroma-systems-extended

└── poky

The first time the command is run, it’ll create a new build directory called build and add the appropriate
configuration files. On the later runs, if the directory still exists, the command will only configure the terminal
environment and not change anything in the build directory. This makes it perfectly safe to run the command
multiple times, from different terminals for example.

Note: Once the current terminal is closed or a new one is opened, this command should be re-executed to be
able to interact again with the Yocto Project tools.

The Yocto Project then needs to be configured to include layers to find new recipes or configuration files, which
is essential to build new pieces of software or compile for a specific hardware target system.

This can be done with the bitbake-layers tool:

bitbake-layers add-layer ^../meta-arm/meta-arm-toolchain

bitbake-layers add-layer ^../meta-arm/meta-arm

bitbake-layers add-layer ^../meta-rockchip

bitbake-layers add-layer ^../meta-openembedded/meta-oe

bitbake-layers add-layer ^../meta-openembedded/meta-python

bitbake-layers add-layer ^../meta-openembedded/meta-networking

bitbake-layers add-layer ^../meta-theobroma-systems-bsp

bitbake-layers add-layer ^../meta-theobroma-systems-extended

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 29



6.3.3 Building an image

To build a bootable artifact, BitBake will be called with the specified machine and target image:

MACHINE="ringneck-haikou" bitbake theobroma-extended-image

Note: Technically speaking, the MACHINE variable could be set in build/conf/local.conf file once and for all.
If possible, CHERRY recommends passing the variable explicitly in the command directly as this makes it more
visible to the user and also allows to easily build for multiple machines without modifying a file in-between.

The build process can take several hours depending on the capabilities of the build machine and the user’s
Internet connection.

Note: If the Bitbake process needs to be stopped for any reason, a SIGINT (Ctrl + c) signal can be sent once.
Bitbake will gracefully close down upon reception of this signal. This graceful shutdown can take a lot of time
depending on the tasks that are currently being executed. It is highly recommended to not send this signal
more than once, failing to do so may hinder next Bitbake commands.

The artifacts can be found after some time in build/tmp/deploy/images/ringneck-haikou/ direc-
tory. A flashable image is one whose extension is .wic, e.g. theobroma-extended-image-ring-

neck-haikou-20221021134027.rootfs.wic.

Make the resulting image available for later steps:

export SDCARD_IMG="$PWD/build/tmp/deploy/images/ringneck-haikou/theobroma-extended-image-ringneck-

→˓haikou.wic"

6.3.4 Building with kas

kas is a setup tool for Bitbake-based projects, such as the Yocto Project, which aims to replace the commands
listed above for a simpler, more automated, setup and creation of images.

CHERRY provides a kas configuration file kas-theobroma.yml in the BSP meta layer for convenience.

kas can be installed on the build machine with the following command:

sudo apt-get install -y ^--no-install-recommends kas

Note: It is also available as a Python package and installable with:

python3 -m venv venv

# shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

The Section 6.3.1 Initial setup and Section 6.3.2 Initializing build environment can then be replaced by the fol-
lowing two commands:

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git -b‿

→˓kirkstone

kas checkout meta-theobroma-systems-extended/kas-theobroma.yml

The Section 6.3.3 Building an image can now be replaced with:

KAS_MACHINE="ringneck-haikou" kas build meta-theobroma-systems-extended/kas-theobroma.yml

v1.5.0
Page 30

https://github.com/siemens/kas
https://pypi.org/project/kas/


Note: kas is also available in an OCI container form on GitHub container registry.

It is still recommended to install kas through pip but then use its kas-container wrapper script to start the
container properly. E.g. to replace the last command to build an image with kas one can call this instead:

python3 -m venv venv

# shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

KAS_IMAGE_VERSION="4.0" KAS_MACHINE="ringneck-haikou" kas-container build meta-theobroma-systems-

→˓extended/kas-theobroma.yml

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 31

https://ghcr.io/siemens/kas/kas


7 Deploy a disk image
This chapter describe how to write a disk image as generated in one of the previous chapters using Yocto or
Debian to the module.

Note: The variable SDCARD_IMGmust be already set as described in respective chapter.

Warning: Avoid having the disk image on both the SD Card and the internal eMMC of the module.

As the Linux kernel on the module uses PARTLABEL and PARTUUID to identify partitions to mount, it will be
unpredictable whether the SD Card or the internal eMMC is used.

7.1 Deploy on SD Card

Insert an SD card into the host PC and check dmesg -w to find out the device name that was used.

Then, run this command, replacing /dev/sdX with the real device name:

sudo dd bs=1M conv=nocreat oflag=direct status=progress if="$SDCARD_IMG" of=/dev/sdX

7.2 Deploy on internal eMMC

7.2.1 Compile rkdeveloptool

To write the image directly onto the on-board eMMC, the flashing tool rkdeveloptool is used, and it must be
compiled on the host PC:

# Install compile dependencies

sudo apt-get -y install git libudev-dev libusb-1.0-0-dev dh-autoreconf pkg-config build-essential

# Download rkdeveloptool source code

git clone https:^//github.com/rockchip-linux/rkdeveloptool.git

cd rkdeveloptool ^|| return

# Compile rkdeveloptool

autoreconf -i

CPPFLAGS=-Wno-format-truncation ./configure

make

# Download miniloaders used for flashing

git clone https:^//github.com/rockchip-linux/rkbin.git tools/rk_tools

# Build miniloader binaries

(

cd tools/rk_tools/ ^|| return

./tools/boot_merger RKBOOT/PX30MINIALL.ini

)

# Make the resulting files available to later steps

export RKDEVELOPTOOL_DIR="$PWD"

This step should take about 1 minute total.

v1.5.0
Page 32



7.2.2 Enter USB flashing mode

To enter the USB flashing mode, make sure the BOOT SW slider (see Fig. 3.1 HAIKOU CB-MINI-ITX with RING-
NECK SOM-PX30-uQ7) is in BIOS Disablemode and there’s no SD card inserted in HAIKOU CB-MINI-ITX.

Then, insert a micro-USB cable into the USB-OTG port (see Fig. 3.8 USB 2.0 OTG port (dual-role port: can be
used as a host or device interface)) on HAIKOU CB-MINI-ITX and into a USB port of your host PC.

Then, power cycle the device by unplugging and replugging the power supply or by pressing the Reset button.
The lsusb command on your host PC should return the following:

$ lsusb -d 2207:330d

Bus 001 Device 028: ID 2207:330d Fuzhou Rockchip Electronics Company

Now, put the BOOT SW slider back into the Normal Bootmode.

7.2.3 Flash the eMMC

Warning: The BOOT SW slider must be back in Normal Bootmode, otherwise the eMMC is inaccessible and
stays empty. You will see rkdeveloptool making improbably quick write progress in this case.

To write the image file path stored in the variable SDCARD_IMG to the on-board eMMC, run:

cd "$RKDEVELOPTOOL_DIR" ^|| return

sudo ./rkdeveloptool db tools/rk_tools/px30_loader_v*.bin ^&& sleep 1

sudo ./rkdeveloptool wl 0 "$SDCARD_IMG"

sudo ./rkdeveloptool rd

This step should take about 1 minute for the Debian image.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 33



8 Wifi
RINGNECK SOM-PX30-uQ7 features an on-boardWifi module. This chapter shows how to connect to an existing
Wifi network and how to flash the wifi firmware, should the need arise.

8.1 Antenna

The development kit includes an antenna compatible with the Wifi module. Other antennas can be used. The
connector on the antenna must be one of:

• W.FL Series connector from Hirose

• MHF III connector from I-PEX

• AMMC connector from Amphenol

8.2 Connecting to a Wifi network

You can show the available wifi networks using:

nmcli dev wifi

Connect to a network using the following command (replace the network name and password as appropriate):

nmcli dev wifi connect "CHERRY Example Wifi" password "hello-px30"

You should get a message like:

Device 'wlan0' successfully activated with '79ef39fc-8f49-4719-a8d9-4d6d789bb815'.

You should have connectivity over Wifi now. You can check the IP address you received using:

ip addr show dev wlan0

Note: By default, nmcli is not available in our Yocto core-image-minimal image. However, it is available in our
Yocto theobroma-extended-image image.

8.3 Flashing the wifi firmware

You need to have esptool.py installed on the module.

The wifi firmware consists of three files:

• bootloader.bin

• partition-table.bin

• eagle.bin

Save all three to the /tmp directory on the module.

Then flash the wifi module as shown below:

v1.5.0
Page 34



GPIO_BOOT=1 #GPIO0_A1

GPIO_EN=72 #GPIO2_B0

echo ff380000.mmc > /sys/bus/platform/drivers/dwmmc_rockchip/unbind

echo sdio-pwrseq > /sys/bus/platform/drivers/pwrseq_simple/unbind

if [ ! -d "/sys/class/gpio/gpio$GPIO_BOOT" ]; then

echo "$GPIO_BOOT" > /sys/class/gpio/export

fi

if [ ! -d "/sys/class/gpio/gpio$GPIO_EN" ]; then

echo "$GPIO_EN" > /sys/class/gpio/export

fi

echo out > "/sys/class/gpio/gpio$GPIO_BOOT/direction"

echo out > "/sys/class/gpio/gpio$GPIO_EN/direction"

echo 0 > "/sys/class/gpio/gpio$GPIO_BOOT/value"

echo 0 > "/sys/class/gpio/gpio$GPIO_EN/value"

sleep 1

echo 1 > "/sys/class/gpio/gpio$GPIO_EN/value"

sleep 1

ESPTOOL=$(PATH="/root/.local/bin/:$PATH" which esptool.py)

"$ESPTOOL" -p /dev/ttyS3 -b 460800 ^--before default_reset ^--after hard_reset \

^--chip esp32 write_flash ^--flash_mode dio ^--flash_size detect ^--flash_freq 40m \

0x1000 /tmp/bootloader.bin \

0x8000 /tmp/partition-table.bin \

0x10000 /tmp/eagle.bin

sleep 1

echo 1 > "/sys/class/gpio/gpio$GPIO_BOOT/value"

echo 0 > "/sys/class/gpio/gpio$GPIO_EN/value"

sleep 1

echo 1 > "/sys/class/gpio/gpio$GPIO_EN/value"

echo "$GPIO_BOOT" > /sys/class/gpio/unexport

echo "$GPIO_EN" > /sys/class/gpio/unexport

echo sdio-pwrseq > /sys/bus/platform/drivers/pwrseq_simple/bind

echo ff380000.mmc > /sys/bus/platform/drivers/dwmmc_rockchip/bind

Note: On Debian, the esptool package provided by the package feed is too old. Instead, please install esptool
software from pip:

apt-get -y install python3-pip

pip3 install ^--user esptool

Note: By default, esptool is not available in our Yocto core-image-minimal image.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 35



9 Serial Number & MAC Address

9.1 Serial Number

Each RINGNECK SOM-PX30-uQ7 has a unique serial number that can be read by software.

In U-Boot, the serial number is contained in the environment variable serial#. You can print it using the
command:

printenv serial#

Under Linux, it is represented by a simple text file in /sys:

cat /sys/firmware/devicetree/base/serial-number

The serial number is fixed in hardware (derived from the SoC CPU ID) and cannot be modified.

9.2 MAC Address

By default, the MAC address of each module is a random value derived from the serial number. The properties
of this default MAC address are:

• It is a Locally Administered Address: The U/L bit of the MAC address is set to 1

• It is not guaranteed to be globally unique

• The address is fixed for each module. It stays constant across reboots as it is deterministically derived
from the serial number

To set your own Universally Administered Address, you overwrite the U-Boot environment variable ethaddr.
On the U-Boot prompt, with XX:XX:XX:XX:XX:XX replaced by your MAC address:

setenv ethaddr XX:XX:XX:XX:XX:XX

saveenv

The MAC address can be queried from the U-Boot prompt using:

printenv ethaddr

To reset the MAC address to the default value, run:

env delete ethaddr

saveenv

v1.5.0
Page 36



10 Mule Companion Controller
Mule Companion Controller is an on-board microcontroller, that provides additional features to the CPU. Mule
is available in two variants:

• Companion Controller 1 (STM32)

• Companion Controller 2 (ATtiny)

Only one variant can be available on the board.

Both variants support almost the same set of features. The only difference is CAN support.

Feature set and usage manual of both variants are described in subsections below.

10.1 Companion Controller 1 (STM32)

Controller is based on STM32 microcontroller and provides additional features to the CPU, exposed via I2C and
USB. It emulates standard ICs and does not need custom drivers on Linux.

Mule STM32 controller supports the following features:

• RTC

• Temperature sensor

• Fan controller

• CAN

For hardware details, please refer to Section 12.4.4 Companion Controller 1.

10.1.1 Internal connections

Mule STM32 controller is connected to SoC via I2C, USB and the following pins.

Function CPU Pin Linux GPIO #
NRST GPIO3_A4 100
BOOT0 GPIO3_A5 101

10.1.2 DFU mode

The USB DFU bootloader application provides access to the internal flash memory of STM32 microcontroller.

To enter DFU mode:

1. Pull BOOT0 pin high

2. Cycle reset Mule STM32 using NRST pin

3. The microcontroller will appear as a new USB device in Linux (vid:pid as 0483:df11)

To return to normal operation, BOOT0 must be pulled low again to not enter DFUmode in the next power-cycle.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 37



10.1.3 Flashing the STM32 firmware

For convenience, mule.sh tool is available for controlling and flashing the STM32 microcontroller. Executing
the script, SoC resets microcontroller into DFU mode and then uploads the firmware binary to internal STM32
flash memory.

The tool is available here: https://git.embedded.cherry.de/som-tools.git/tree/mule.

To flash STM32 microcontroller using mule.sh, please follow the steps below.

1. Install mule.sh dependencies according to README.md

2. Upload mule.sh tool and mule.dfu firmware file to a device

3. Flash controller using the following command:

sudo ./mule.sh ^--flash mule.dfu

Note: It is highly recommended that one reboots the main SoC interacting with the companion microcontroller
after flashing to make sure device drivers are properly initialized.

10.2 Companion Controller 2 (ATtiny)

Controller is based on ATtiny microcontroller and provides additional features to the CPU, exposed via I2C. This
controller is a substitute for first controller, supports the same functions except CAN. As for the first controller,
it emulates standard ICs and does not need custom drivers on Linux.

Mule ATtiny controller supports the following features:

• RTC

• Temperature sensor

• Fan controller

For hardware details, please refer to Section 12.4.5 Companion Controller 2.

10.2.1 Internal connections

Mule ATtiny controller is connected to SoC via I2C bus and the following pins.

Function CPU Pin Linux GPIO #
RST GPIO3_A4 100
BOOT GPIO3_A5 101

10.2.2 Flashloader mode

Flashloader mode allows writing to the internal ATtiny flash memory via I2C.

To enter flashloader mode:

1. Pull BOOT pin high

2. Cycle reset ATtiny using RST pin

v1.5.0
Page 38

https://git.embedded.cherry.de/som-tools.git/tree/mule


10.2.3 Flashing the ATtiny firmware

The ATtiny microcontroller can be flashed from SoC through the I2C interface using i2c-flash tools. Exe-
cuting the script, SoC resets microcontroller into flashloader mode and then transfers the binary that will be
committed to flash.

Tools are available here: https://git.embedded.cherry.de/som-tools.git/tree/mule-attiny.

To flash ATtiny microcontroller, please follow the steps below.

1. Setup tool dependencies according to README.md

2. Flash controller using the following command:

FIRMWARE_BIN="/path/to/mule-attiny-app-i2c-v*.bin"

./i2c_flash.py -f "$FIRMWARE_BIN" -c 3 -g 5 -b 1 -rc 3 -rg 4

When using the flashing script, the bootloader version is printed to the output console. The version can also be
read without flashing the device (WARNING: This resets the RTC logic) using:

./i2c_flash.py -c 3 -g 5 -b 1 -rc 3 -rg 4

without specifiying a firmware binary.

Note: It is highly recommended that one reboots the main SoC interacting with the companion microcontroller
after using the flashing script to make sure device drivers are properly initialized.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 39

https://git.embedded.cherry.de/som-tools.git/tree/mule-attiny


11 Phosh graphical shell
Phosh is a graphical user interface designed for touch-based devices. It is based on the GTK widget toolkit, and
derives from the GNOME Shell as a mobile-specific fork. Phosh is used as a default graphical user interface in
the reference images for DEVKIT ADDON CAM-TS-A01.

11.1 Usage

Phosh features a user interface which is similar to what is found on mobile phones today:

Fig. 11.1: Locked screen Fig. 11.2: Login screen Fig. 11.3: Main screen

11.1.1 Unlocking the screen

After the boot up, the device is locked. When the device is locked, display should show a screen similar to Fig.
11.1.

To unlock the device, please follow the steps below:

1. Slide the screen from the bottom to the top, to access the login screen. The login screen looks similar to
Fig. 11.2.

2. Enter the password and press the ‘Unlock’ button. For non-numeric password, there is a virtual keyboard
available. Virtual keyboard can be opened using the bottom-left button with the keyboard icon.

Default user on Phosh image is user. Default password is 123123.

After unlocking the device, the Main screen (Fig. 11.3) should be visible on the display.

v1.5.0
Page 40



11.1.2 Waking up the device

The user can lock the device again using the Lock Screen button from the top bar menu. The current session
will be locked, and the display will be turned off. To turn on the display again, press the WAKE button on HAIKOU
CB-MINI-ITX.

11.2 Known issues

1. Wrong display resolution when device is locked. Locked screen (Fig. 11.1) and Login screen (Fig. 11.2)
are extended by few pixels at the bottom. This causes that button and text placed at the bottom are not
displayed correctly. This issue does not occur when the device is unlocked.

2. Settings application (gnome-control-center) crashes when trying to open Displays tab. The last opened
tab is remembered by the Settings, which causes crashes every time the application is opened. This
makes the application unusable. To restore the application to a usable state, open another tab using the
terminal:

gnome-control-center power

3. No battery icon is visible in the top right corner.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 41



12 Hardware Guide
This Hardware Guide provides information about the features, connectors and signals available on RINGNECK
SOM-PX30-uQ7.

12.1 Q7 Implementation

Q7 has mandatory and optional features. Following table shows the feature set of the RINGNECK
SOM-PX30-uQ7 module compared to the minimum ARM/RISC based and maximum configuration according
to the Q7 standard.

System I/O Interface Q7 Minimum RINGNECK SOM-PX30-uQ7 Q7 Maximum
PCI Express lanes 0 0 4
Serial ATA channels 0 0 2
USB 2.0 ports 1 4 8
USB 3.0 ports 0 0 3
LVDS channels 0 1 2
Embedded DisplayPort 0 0 1
MIPI-CSI 0 1 2
HDMI 0 0 1
High Definition Audio / AC’97 / I2S 0 1 1
Ethernet 10/100/Gigabit 0 1x 100Mbps 1x Gigabit
UART 0 1 (+1 shared with GPIO) 1
GPIO 0 8 8
Secure Digital I/O 0 1 1
System Management Bus 0 0 1
I²C Bus 1 3 4
SPI Bus 0 1 1
CAN Bus 0 1 1
Watchdog Trigger 1 1 1
Power Button 1 1 1
Power Good 1 1 1
Reset Button 1 1 1
LID Button 0 1 1
Sleep Button 0 1 1
Suspend to RAM (S3 mode) 0 1 1
Wake 0 1 1
Battery low alarm 0 1 1
Thermal control 0 1 1
FAN control 0 1 1

Note: RINGNECK SOM-PX30-uQ7 is available in different variants. This document describes the maximum
configuration. For details about orderable variants please refer to the order-code document.

Note: Not all interfaces are available at the same time as they might conflict with others. E.g. it is not possible
to have LVDS channels and MIPI-DSI at the same time.

v1.5.0
Page 42



12.2 Q7 Connector Pinout

The following table shows the signals on the edge connector of RINGNECK SOM-PX30-uQ7.

Empty cells are not connected (NC) pins.

Pin Signal Pin Signal
1 GND 2 GND
3 4
5 6
7 GBE_LINK# 8 GBE_LINK1000#
9 GBE_MDI1- 10 GBE_MDIO0-
11 GBE_MDI1+ 12 GBE_MDIO0+
13 GBE_LINK# 14 GBE_ACT#
15 GBE_CTRFF 16 SUS_S5#
17 WAKE# 18 SUS_S3#
19 GP0 20 PWRBTN#
21 SLP_BTN# 22 LID_BTN#
23 GND 24 GND
25 GND 26 PWGIN
27 BATLOW# 28 RSTBTN#
29 30
31 32
33 34 GND
35 36
37 38
39 GND 40 GND
41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK#
43 SDIO_CD# 44 SDIO_LED
45 SDIO_CMD 46 SDIO_WP
47 SDIO_PWR# 48 SDIO_DAT1
49 SDIO_DAT0 50 SDIO_DAT3
51 SDIO_DAT2 52
53 54
55 56
57 GND 58 GND
59 I2S_WS 60
61 I2S_RST# 62
63 I2S_CLK 64
65 I2S_SDI 66 GP0_I2C_CLK
67 I2S_SDO 68 GP0_I2C_DAT
69 70 WDTRIG#
71 THRMTRIP# 72 WDOUT
73 GND 74 GND
75 76
77 78
79 80
81 82
83 84
85 USB_OC# 86 USB_OC#
87 USB_P3- 88 USB_P2-
89 USB_P3+ 90 USB_P2+
91 USB_VBUS 92 USB_ID
93 USB_P1- 94 USB_P0-
95 USB_P1+ 96 USB_P0+
97 GND 98 GND
99 LVDS_A0+/DSI_D0+ 100 CSI_D0+
101 LVDS_A0-/DSI_D0- 102 CSI_D0-
103 LVDS_A1+/DSI_D1+ 104 CSI_D1+

continues on next page

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 43



Table 12.1 – continued from previous page
Pin Signal Pin Signal
105 LVDS_A1-/DSI_D1- 106 CSI_D1-
107 LVDS_A2+/DSI_D2+ 108 CSI_D2+
109 LVDS_A2-/DSI_D2- 110 CSI_D2-
111 LVDS_PPEN 112 LVDS_BLEN
113 LVDS_A3+/DSI_D3+ 114 CSI_D3+
115 LVDS_A3-/DSI_D3- 116 CSI_D3-
117 GND 118 GND
119 LVDS_A_CLK+/DSI_CLK+ 120 CSI_CLK+
121 LVDS_A_CLK-/DSI_CLK- 122 CSI_CLK-
123 LVDS_BLT_CTRL / GP_PWM_OUT0 124
125 GP2_I2C_DAT / LVDS_DID_DAT 126 LVDS_BLC_DAT
127 GP2_I2C_CLK / LVDS_DID_CLK 128 LVDS_BLC_CLK
129 CAN0_TX 130 CAN0_RX
131 132
133 134
135 GND 136 GND
137 138
139 140
141 GND 142 GND
143 144
145 146
147 GND 148 GND
149 150
151 152
153 154
155 156
157 158
159 GND 160 GND
161 162
163 164
165 GND 166 GND
167 168
169 170
171 UART0_TX 172 UART0_RTS#
173 174
175 176
177 UART0_RX 178 UART0_CTS#
179 180
181 182
183 GND 184 GND
185 GPIO0 186 GPIO1
187 GPIO2 188 GPIO3
189 GPIO4 190 GPIO5 / UART1_TX
191 GPIO6 / UART1_RX 192 GPIO7
193 VCC_BAT 194 SPKR / GP_PWM_OUT2
195 FAN_TACHOIN / GP_TIMER_IN 196 FAN_PWMOUT / GP_PWM_OUT1
197 GND 198 GND
199 SPI_MOSI 200 SPI_CS0#
201 SPI_MISO 202 SPI_CS1#
203 SPI_SCK 204 MFG_BIOS_DISABLE#
205 206
207 208 UPDI_UART_TX
209 UPDI_UART_RX 210
211 212
213 214
215 216
217 218

continues on next page

v1.5.0
Page 44



Table 12.1 – continued from previous page
Pin Signal Pin Signal
219 VCC 220 VCC
221 VCC 222 VCC
223 VCC 224 VCC
225 VCC 226 VCC
227 VCC 228 VCC
229 VCC 230 VCC

12.3 Signal Details

12.3.1 Ethernet

Q7 Signal Type Signal
Level

Description

GBE_MDI[0:1]+
GBE_MDI[0:1]-

I/O Analog Fast Ethernet Controller: Media Dependent Interface Differen-
tial Pairs 0,1. TheMDI can operate in 100 and 10Mbit/secmodes

GBE_ACT# OC 3.3V Ethernet Controller activity indicator, active low
GBE_LINK# OC 3.3V Ethernet Controller link indicator, active low
GBE_LINK100# OC 3.3V Internally connected to GBE_LINK#
GBE_CTREF REF Analog Center Tap Voltage

12.3.2 USB

Q7 Signal Type Signal
Level

Description

USB_P[0:2]+
USB_P[0:2]-

I/O USB High speed universal Serial Bus Port 0, 1, 2 differential pairs

USB_OC# I 3.3V Over current detect input. The carrier board can signal an USB
overcurrent condition by pulling this pin low.

USB_ID I 3.3V Configures the mode of the USB Port 1. If the signal is active
high the Port will be configured as USB Client

USB_VBUS I 5.0V USB VBUS pin, 5V tolerant

12.3.3 SDIO

Q7 Signal Type Signal
Level

Description

SDIO_CD# I 3.3V SDIO Card Detect. This signal indicates when a SDIO/MMC card
is present

SDIO_CLK O 3.3V SDIO Clock
SDIO_CMD I/O 3.3V SDIO Command/Response
SDIO_LED O 3.3V SDIO LED. Used to drive an external LED to indicate transfers

on the bus
SDIO_WP I 3.3V SDIO Write Protect
SDIO_PWR# O 3.3V SDIO Power Enable. This signal is used to enable the power

being supplied to a SD/MMC card device
SDIO_DAT0-4 I/O 3.3V SDIO Data lines

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 45



12.3.4 I2C

Q7 Signal Type Signal
Level

Description

Q7_I2C_CLK O 3.3V I2C bus clock line connected to PX30
Q7_I2C_DAT I/O 3.3V I2C bus data line connected to PX30
LVDS_DID_CLK
/GP2_I2C_CLK

O 3.3V I2C bus clock line connected to PX30, Secure Element, STM32,
Attiny and Video connector

LVDS_DID_DAT
/GP2_I2C_DAT

I/O 3.3V I2C bus data line connected to PX30, Secure Element, STM32,
Attiny and Video connector

LVDS_BLC_DAT O 3.3V I2C bus clock line connected to PX30, Video connector and car-
rier board EEPROM

LVDS_BLC_CLK I/O 3.3V I2C bus data line connected to PX30, Video connector and carrier
board EEPROM

12.3.5 I2S

Q7 Signal Type Signal
Level

Description

I2S_RST# O 3.3V I2S Codec Reset
I2S_WS O 3.3V I2S Word Select
I2S_CLK O 3.3V I2S Serial Data Clock
I2S_SDO O 3.3V I2S Serial Data Output
I2S_SDI I 3.3V I2S Serial Data Input

12.3.6 Video

The Q7 LVDS_A pins support LVDS and MIDI-DSI. LVDS and MIPI-DSI signals are electrically compatible in the
sense that nothing will be damaged, but are not defined in the Qseven standard.

The MIPI-DSI specifications are:

• MIPI DSI D-PHY v1.0

• Up to four data lates

• Up to 1.0 Gbps per lane

The signal mapping is shown below:

Q7 Signal Function 1 Function 2
LVDS_A0_P LVDS_A0+ DSI_D0+
LVDS_A0_N LVDS_A0- DSI_D0-
LVDS_A1_P LVDS_A0+ DSI_D1+
LVDS_A1_N LVDS_A1- DSI_D1-
LVDS_A2_P LVDS_A2+ DSI_D2+
LVDS_A2_N LVDS_A2- DSI_D2-
LVDS_A3_P LVDS_A3+ DSI_D3+
LVDS_A3_N LVDS_A3- DSI_D3-
LVDS_A_CLK_P LVDS_A_CLK+ DSI_CLK+
LVDS_A_CLK_N LVDS_A_CLK- DSI_CLK-

The Q7 LVDS_B pins are used as MIPI-CSI. The specifications are:

• MIPI CSI D-PHY v1.0

• Up to four data lanes

v1.5.0
Page 46



• Up to 1.0 Gbps per lane

The signal mapping is shown below:

Q7 Signal Function
LVDS_B0_P CSI_D0+
LVDS_B0_N CSI_D0-
LVDS_B1_P CSI_D1+
LVDS_B1_N CSI_D1-
LVDS_B2_P CSI_D2+
LVDS_B2_N CSI_D2-
LVDS_B3_P CSI_D3+
LVDS_B3_N CSI_D3-
LVDS_B_CLK_P CSI_CLK+
LVDS_B_CLK_N CSI_CLK-

12.3.7 GPIO

Q7 Signal Type Signal
Level

Description

GPIO[0-7] I/O 3.3V General purpose inputs/outputs 0 to 7

12.3.8 CAN

Q7 Signal Type Signal
Level

Description

CAN0_TX O 3.3V CAN (Controller Area Network) TX output for CAN Bus channel
0

CAN0_RX I 3.3V CAN (Controller Area Network) RX input for CAN Bus channel 0

12.3.9 SPI

Q7 Signal Type Signal
Level

Description

SPI_MOSI O 3.3V Master serial output/Slave serial input signal
SPI_MISO I 3.3V Master serial input/Slave serial output signal
SPI_SCK O 3.3V SPI clock output
SPI_CS0# O 3.3V SPI chip select 0 output
SPI_CS1# O 3.3V SPI chip select 1 output (used when two devices are connected)

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 47



12.3.10 UART

UART0, as specified in the Q7 standard, is implemented including hardware flow control. This UART shows up
in Linux as /dev/ttyS0.

Q7 Signal Type Signal
Level

Description

UART0_TX O 3.3V Serial data transmit
UART0_RX I 3.3V Serial data receive
UART0_CTS# I 3.3V Handshake signal: ready to send data
UART0_RTS# O 3.3V Handshake signal: ready to receive data

A second UART, UART1, can be enabled on the GPIO pins. This UART shows up in Linux as /dev/ttyS5.

Q7 Signal Alternate function Type Signal Level Description
GPIO5 UART1_TX O 3.3V Serial data transmit
GPIO6 UART1_RX I 3.3V Serial data receive

12.3.11 Misc

Signal Type Signal
Level

Description

WDTRIG# I 3.3V Watchdog trigger signal
WDOUT O 3.3V Watchdog event indicator
SPKR
GP_PWM_OUT2

O 3.3V PC speaker (buzzer) output. Alternate function general purpose
PWM output

BIOS_DISABLE#
/BOOT_ALT#

I 3.3V Disables the onboard bootloader and uses the one the SD card
instead. If no bootloader is available on the SD card it falls back
to USB recovery mode

THRMTRIP# O 3.3V Thermal Trip indicates an overheating condition of the proces-
sor. If ‘THRMTRIP#’ goes active the system immediately tran-
sitions to the S5 State (Soft Off)

FAN_PWMOUT
/GP_PWM_OUT1

O 3.3V PWM output for fan speed control. Alternate function gen-
eral purpose PWM output. Function based on microcontroller
firmware

FAN_TACHOIN
/GP_TIMER_IN

I 3.3V Fan tachometer input. Alternate function general purpose
timer input. Function based on microcontroller firmware

12.3.12 Power Management

Signal Type Signal
Level

Description

RSTBTN# I 3.3V Reset button input. An active low signal resets the module
BATLOW# I 3.3V Battery low input
WAKE# I 3.3V External system wake event. An active low signal wakes the

module from a sleep state
SUS_S3# O 3.3V Indicated that the system is in suspend to ram (S3)
SUS_S5# O 3.3V Indicated that the system is in soft-off state (S5)
SLP_BTN# I 3.3V Sleep button. Signals the system with an falling edge to transi-

tion into sleep or wake from a sleep state
LID_BTN# I 3.3V LID button. Low active signal to detect a LID switch to transition

into sleep or wake from a sleep state

v1.5.0
Page 48



12.3.13 Power

Signal Nominal
Input

Description

VCC 5V Main supply for the module
VCC_RTC 3V Backup supply for the RTC. If not used it can be left unconnected. Typical cur-

rent: 1.4uA

12.4 On-board Devices

12.4.1 Power-Manager

The Rockchip RK809-1 is connected to the CPU via I2C:

RK809-1 Pin Function CPU Pin
1 SCL I2C0_SCL_u (ball R21)
2 SDA I2C0_SDA_u (ball M21)

12.4.2 DDR4

• Up to 4GB RAM of DDR4-1600

12.4.3 eMMC

• eMMC connected through the 8-bit wide SDIO interface EMMC_D on the CPU.

Signal CPU Pin Linux GPIO #
RESET GPIO1_B3 43

12.4.4 Companion Controller 1

Controller features are implemented by emulating standard ICs. Feature configuration is provided in a table
below.

Feature CPU Connection Emulated IC Qseven Pins
RTC I2C ISL1208 none
Temperature sensor and fan controller I2C AMC6821 FAN_TACHOIN, FAN_PWMOUT
CAN USB UCAN CAN0_TX, CAN0_RX

See also Section 10.1 Companion Controller 1 (STM32).

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 49



12.4.5 Companion Controller 2

Controller features are implemented by emulating standard ICs. Feature configuration is provided in a table
below.

Feature CPU Connection Emulated IC Qseven Pins
RTC I2C ISL1208 none
Temperature sensor and fan controller I2C AMC6821 FAN_TACHOIN, FAN_PWMOUT

See also Section 10.2 Companion Controller 2 (ATtiny).

12.4.6 Ethernet PHY

The Texas Instruments DP83825IRMQR is connected to the CPU via RGMII and MDIO. Further connections are
shown below.

PHY signal Connected to Linux GPIO #
RESET CPU pin GPIO3_B0 104
MDIO CPU pin GPIO2_A7 71
MDC CPU pin GPIO2_B1 73
LED1 Qseven GBE_LINK1000 and GBE_LINK100 and GBE_LINK (tied together)
LED2 Qseven GBE_ACT

12.5 Wifi and Bluetooth module

Fig. 12.1: WiFi and Bluetooth module

The WiFi and Bluetooth are part of the ESP32 PICO MINI 02U module on RINGNECK SOM-PX30-uQ7. The
antenna connector on the module is w.FL type. The firmware running on the ESP32 is flashed in its internal
memory and unlike most wireless modules, does not require files to be present in the root filesystem. This also
means that a firmware upgrade is slightly more complex since it needs to be flashed (see Section 8.3 Flashing
the wifi firmware).

The following pins are used for boot and reset.

v1.5.0
Page 50



ESP32 signal CPU Pin Linux GPIO #
WiFi_RST GPIO2_B0 72
WiFi_BOOT GPIO0_A1 1

12.5.1 Test points RINGNECK SOM-PX30-uQ7

Test point Connected to
TP1 5V
TP2 VCC_3V3
TP3 VDD_LOG
TP4 VDD_ARM
TP5 VCC_DDR
TP6 VCC_3V0_1V8
TP7 VCC_1V8
TP8 VCC_1V0
TP9 VCCIO_SD
TP10 VCC_LCD
TP11 1V8_LCD
TP12 VCCA_1V8
TP13 VCC_eMMC
TP14 PMIC_INT
TP15 PMIC_SLEEP
TP16 VDC
TP17 PMIC_PWRON
TP18 I2C0_SCL
TP19 I2C0_SDA
TP20 PMIC_Xin
TP21 PMIC_Xout
TP22 PX30_Xin
TP23 PX30_Xout
TP24 MCU_UART_TX
TP25 MCU_UART_RX
TP26 Q7_LVDS_DID_CLK
TP27 Q7_LVDS_DID_DAT
TP28 Q7_LVDS_BLC_DAT
TP29 Q7_LVDS_BLC_CLK
TP30 I34 WiFi
TP31 I35 WiFi
TP32 ESP32_TXD0
TP33 ESP32_RXD0
TP34 BT_UART_TX
TP35 BT_UART_RX
TP36 BT_RESET
TP37 BT_UART_RTS_n
TP38 BT_UART_CTS_n
TP39 BT_wake_host

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 51



12.6 USB

The SoC on RINGNECK SOM-PX30-uQ7 has 2 USB 2.0 controllers. A USB 2.0 hub provides two additional USB
2.0 ports for a total of four.

The routing of Qseven signals to CPU and/or hub port is shown below.

Qseven Port # Speed Connected to Notes
USB_P0 USB 2.0 Hi-Speed Hub
USB_P1 USB 2.0 Hi-Speed CPU OTG Port
USB_P2 USB 2.0 Hi-Speed Hub
USB_P3 USB 2.0 Hi-Speed Hub

The lsusb -t command shows the USB topology in a tree view and is highly recommended. Its output is
discussed below, for RINGNECK SOM-PX30-uQ7 without additional devices connected:

$ lsusb -t

- Bus 03.Port 1: Dev 1, Class=root_hub, Driver=ohci-platform/1p, 12M

- Bus 02.Port 1: Dev 1, Class=root_hub, Driver=ehci-platform/1p, 480M

* Port 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 480M

Port 1: Dev 3, If 0, Class=Mass Storage, Driver=usb-storage, 480M

Port 3: Dev 4, If 0, Class=Mass Storage, Driver=usb-storage, 480M

Port 4: Dev 6, If 0, Class=Vendor Specific Class, Driver=ucan, 12M

- Bus 01.Port 1: Dev 1, Class=root hub, Driver=dwc2 1p, 480M

The CAN controller is connected to Port 4 on the hub.

The USB hub can be held in reset, if required. This disables all USB ports connected to the hub. The reset
signal routing is shown below:

Hub signal CPU Pin Linux GPIO #
USBHUB_RESETn GPIO0_A5 5

v1.5.0
Page 52



12.7 Using Qseven Signals as GPIO

Most Qseven signals can be reused as a general purpose I/O pin. The following table shows the mapping and
the possible direction as seen from the baseboard.

Qseven
Pin

Signal CPU Pin Linux
GPIO
#

Direction

16 SUS_S5# GPIO3_A0 96 Bidirectional
17 WAKE# GPIO1_B6 46 Input
18 SUS_S3# GPIO3_A3 99 Bidirectional
19 GPO0 GPIO2_B3 75 Bidirectional
21 SLP_BTN# GPIO1_B7 47 Input
22 LID_BTN# GPIO3_A6 102 Bidirectional
27 BATLOW# GPIO3_A7 103 Bidirectional
42 SDIO_CLK# GPIO1_D6 62 Bidirectional
43 SDIO_CD# GPIO0_A3 3 Bidirectional
44 SDIO_LED GPIO3_B3 107 Birectional
45 SDIO_CMD GPIO1_D7 63 Bidirectional
46 SDIO_WP GPIO3_B5 109 Bidirectional
47 SDIO_PWR# GPIO3_D3 123 Bidirectional
48 SDIO_DAT1 GPIO1_D3 59 Bidirectional
49 SDIO_DAT0 GPIO1_D2 58 Bidirectional
50 SDIO_DAT3 GPIO1_D5 61 Bidirectional
51 SDIO_DAT2 GPIO1_D4 60 Bidirectional
59 I2S_WS GPIO3_C2 114 Bidrectional
63 I2S_CLK GPIO3_C3 115 Bidirectional
65 I2S_SDI GPIO3_C5 117 Bidirectional
66 GP0_I2C_CLK GPIO2_B7 79 Bidirectional
67 I2S_SDO GPIO3_C4 116 Bidirectional
68 GP0_I2C_DAT GPIO2_C0 80 Bidirectional
71 THRMTRIP# GPIO3_D2 122 Bidirectional
111 LVDS_PPEN GPIO0_A2 2 Bidirectional
112 LVDS_BLEN GPIO0_A0 0 Bidirectional
123 LVDS_BLT_CTRL / GP_PWM_OUT0 GPIO0_B7 15 Bidirectional
125 GP2_I2C_DAT / LVDS_DID_DAT GPIO0_C3 19 Bidirectional
127 GP2_I2C_CLK / LVDS_DID_CLK GPIO0_C2 18 Bidirectional
171 UART0_TX GPIO0_B2 10 Bidirectional
172 UART0_RTS# GPIO0_B5 13 Bidirectional
177 UART0_RX GPIO0_B3 11 Bidirectional
178 UART0_CTS# GPIO0_B4 12 Bidirectional
185 GPIO0 GPIO3_C6 118 Bidirectional
186 GPIO1 GPIO3_D0 120 Bidirectional
187 GPIO2 GPIO3_C7 119 Bidirectional
188 GPIO3 GPIO3_D1 121 Bidirectional
189 GPIO4 GPIO3_C0 112 Bidirectional
190 GPIO5 GPIO3_A2 98 Bidirectional
191 GPIO6 GPIO3_A1 97 Bidirectional
192 GPIO7 GPIO2_B6 78 Bidirectional
199 SPI_MOSI GPIO3_B4 108 Bidirectional
200 SPI_CS0# GPIO3_B1 105 Bidirectional
201 SPI_MISO GPIO3_B6 110 Bidirectional
202 SPI_CS1# GPIO3_B2 106 Bidirectional
203 SPI_SCK GPIO3_B7 111 Bidirectional

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 53



12.8 Electrical Specification

12.8.1 Power Supply

The power supply requirements are listed in the table below and are identical to the Qseven specification.

Rail Description Nominal voltage Tolerance
VCC Main power supply 5V 4.75 … 5.25V
VCC_RTC Backup battery 3V 2.4 … 3.3V

v1.5.0
Page 54



12.9 Mechanical Specification

12.9.1 Module Dimensions

The mechanical dimensions of the module are shown below.

Fig. 12.2: Module dimensions (all values in mm)

12.9.2 HAIKOU CB-MINI-ITX Dimensions

The mechanical dimensions of HAIKOU CB-MINI-ITX match the Mini-ITX form factor and can be mounted in a
standard Mini-ITX PC Case.

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 55



13 Known limitations
1. The Rockchip PX30 watchdog should not be used if booting from SD card otherwise RINGNECK

SOM-PX30-uQ7 will not boot unless power-cycled manually.

v1.5.0
Page 56



14 Contact
Cherry Embedded Solutions GmbH
Seestadtstraße 27
1220 Vienna
Austria

Inquiries: sales-es@cherry.de
Technical Support: support-es@cherry.de

RINGNECK SOM-PX30-uQ7 User Manual
© Cherry Embedded Solutions GmbH

v1.5.0
Page 57

mailto:sales-es@cherry.de
mailto:support-es@cherry.de


15 Revision History

Date Revision Major changes
Nov 1, 2022 v0.0.1 First internal release
Dec 21, 2022 v1.0.0 Internal review ; public release
Dec 21, 2022 v1.0.1 Fix one missing image in html output
Mar 29, 2023 v1.1.0 Add Phosh graphical shell
Apr 27, 2023 v1.2.0 Add meta-extended demo image build instructions

Fix incorrect Haikou header(s) for LVDS_DID* and GP0_I2C_* sig-
nals
CAN only supported with STM32

Aug 23, 2023 v1.3.0 Fix Yocto directory tree layout
Add companion controller 1 and 2 (STM & ATtiny) flashing instruc-
tions
Fix companion controller 1 (STM) flashmode entering instructions
Move companion controller 1 and 2 flashing instructions to sepa-
rate section

Dec 18, 2023 v1.3.1 recalled version
Feb 15, 2024 v1.3.2 Rename files for consistency between products

Replace dd flashing instructions with bmaptool
Update pip instructions for Bookworm
Add yocto directory creation
Update kas container instructions
Rephrase layer version requirement
Bump yocto layer and kas versions

Mar 08, 2024 v1.4.0 Add known SoC watchdog limitation note
Update build instruction to match git repositories changes
Add note on how to build debos on non Debian systems

Apr 03, 2024 v1.5.0 Add instructions on how to use kernel modules in debos
Made shell code snippets pass shellcheck
Theobroma Systems is now CHERRY Embedded Solutions

v1.5.0
Page 58


	Introduction
	Device Overview

	First Steps
	Insert RINGNECK SOM-PX30-uQ7
	Mount the Fan (optional)
	Power Up

	Using the DEVKIT
	HAIKOU CB-MINI-ITX Overview
	Power Supply
	Control Buttons and Switches
	CPU Fan
	Boot Order
	USB Serial Console
	RS-232 and RS-485
	TTL UART
	Ethernet
	SD-Card
	USB Interfaces
	Connecting an External USB Drive

	Display and Camera
	RTC
	SPI and I2C
	Linux I2C Bus Numbering

	GPIOs
	Audio
	CAN Bus
	CTRL I/O Connector
	MISC Connector
	JTAG Connector

	Software Overview
	Supported Distributions
	Compiling Linux Applications

	Debian image guide
	Prepare the host PC
	Compile the ATF
	Compile U-Boot
	Compile the Linux kernel
	Building the debos image
	Prepare required components
	Build a complete image
	Debian 12 Bookworm
	Debian 12 Bookworm with Phosh graphical shell



	Building a Yocto image
	Prerequisites
	BSP meta layer
	Initial setup
	Initializing build environment
	Building a minimal image
	Building with kas

	Extended meta layer
	Initial setup
	Initializing build environment
	Building an image
	Building with kas


	Deploy a disk image
	Deploy on SD Card
	Deploy on internal eMMC
	Compile rkdeveloptool
	Enter USB flashing mode
	Flash the eMMC


	Wifi
	Antenna
	Connecting to a Wifi network
	Flashing the wifi firmware

	Serial Number & MAC Address
	Serial Number
	MAC Address

	Mule Companion Controller
	Companion Controller 1 (STM32)
	Internal connections
	DFU mode
	Flashing the STM32 firmware

	Companion Controller 2 (ATtiny)
	Internal connections
	Flashloader mode
	Flashing the ATtiny firmware


	Phosh graphical shell
	Usage
	Unlocking the screen
	Waking up the device

	Known issues

	Hardware Guide
	Q7 Implementation
	Q7 Connector Pinout
	Signal Details
	Ethernet
	USB
	SDIO
	I2C
	I2S
	Video
	GPIO
	CAN
	SPI
	UART
	Misc
	Power Management
	Power

	On-board Devices
	Power-Manager
	DDR4
	eMMC
	Companion Controller 1
	Companion Controller 2
	Ethernet PHY

	Wifi and Bluetooth module
	Test points RINGNECK SOM-PX30-uQ7

	USB
	Using Qseven Signals as GPIO
	Electrical Specification
	Power Supply

	Mechanical Specification
	Module Dimensions
	HAIKOU CB-MINI-ITX Dimensions


	Known limitations
	Contact
	Revision History

