

RINGNECK SOM-PX30-uQ7

Power efficient **System-on-Module** with Quad-Core ARM featuring the **Rockchip PX30** application processor

USER MANUAL

Document revision: v1.5.0 Issue date: Apr 13, 2024

Contents

1	I ntroduction 1.1 Device Overview	1 1
2	First Steps 2.1 Insert RINGNECK SOM-PX30-uQ7 2.2 Mount the Fan (optional) 2.3 Power Up	2 2 2 2
3	Using the DEVKIT 3.1 HAIKOU CB-MINI-ITX Overview 3.2 Power Supply 3.3 Control Buttons and Switches 3.4 CPU Fan 3.5 Boot Order 3.6 USB Serial Console 3.7 RS-232 and RS-485 3.8 TTL UART 3.9 Ethernet 3.10 SD-Card 3.11 USB Interfaces 3.12 Display and Camera 3.13 RTC 3.14 SPI and I2C 3.15 GPIOs 3.16 Audio 3.17 CAN Bus 3.18 CTRL I/O Connector 3.19 MISC Connector 3.20 JTAG Connector	4 6 6 7 8 9 10 10 11 12 13 13 14 16 17 17 18 18
4	Software Overview 4.1 Supported Distributions	19 19 19
5	Debian image guide5.1Prepare the host PC5.2Compile the ATF5.3Compile U-Boot5.4Compile the Linux kernel5.5Building the debos image	20 20 21 22 22
6	Building a Yocto image 6.1 Prerequisites 6.2 BSP meta layer 6.3 Extended meta layer	25 25 25 28
7	Deploy a disk image 7.1 Deploy on SD Card	32 32 32
8	Wifi 3.1 Antenna 3.2 Connecting to a Wifi network 3.3 Flashing the wifi firmware	34 34 34 34
9	Serial Number & MAC Address 9.1 Serial Number	36 36

	9.2	MAC Address	36
10	Mule 10.1 10.2	Companion Controller Companion Controller 1 (STM32)	37 37 38
11	Phos 11.1 11.2	h graphical shell Usage	40 40 41
12	Hard 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	ware GuideQ7 ImplementationQ7 Connector PinoutSignal DetailsOn-board DevicesWifi and Bluetooth moduleUSBUsing Qseven Signals as GPIOElectrical SpecificationMechanical Specification	42 43 45 49 50 52 53 54 55
13	Know	vn limitations	56
14	Conta	act	57
15	Revis	sion History	58

1 Introduction

Congratulations for acquiring CHERRY Embedded Solutions new product, combining best-in-class performance with a rich set of peripherals.

Note: The latest version of this manual and related resources can always be found on our website at the following address:

https://embedded.cherry.de/som-product/ringneck-som-px30-uq7/

1.1 Device Overview

PX30 is a high-performance Quad-core application processor designed for personal mobile internet device and other digital multimedia applications. PX30 is a 64-bit low power processor with Quad Core ARM Cortex A35 and dual core Mali G31 GPU. These 64-bit capable ARMv8 Cortex A35 processors support both the ARM Crypographic Extension (e.g.for wire-rate AES encryption) and AdvSIMD vector processing. The ability to receive camera sensor input through a MIPI-CSI interface and to process the resulting imagestream in real-time with the powerful ARM processor cores enables vision and image-analytics applications.

2 First Steps

This chapter provides instructions for getting the RINGNECK SOM-PX30-uQ7 DEVKIT running after opening the box.

2.1 Insert RINGNECK SOM-PX30-uQ7

Insert RINGNECK SOM-PX30-uQ7 module at a 30-degree angle into HAIKOU CB-MINI-ITX Qseven connector. Once fully inserted, push it down until it rests on the standoffs and check alignment of the mounting holes.

Note: The module springs back into the 30-degree angle once released. This is expected, and alignment will be kept. The module will be secured into place.

Fig. 2.1: Module mounting

2.2 Mount the Fan (optional)

The fan is only necessary in exceptionally high ambient temperatures. Under normal conditions RINGNECK SOM-PX30-uQ7 operates passively cooled.

2.3 Power Up

For bootloader configuration and Linux console, the serial interface can be used. Connect either a Micro-USB or RS-232 cable to the corresponding port. Select the correct UART with UART selector slider (1). For Micro-USB, the slider has to be in the right position to route the default console (UART0) to the USB-UART bridge. For RS-232, the slider has to be in the left position and the protocol slider (2) has to be in the RS-232 position (see Fig. 2.2 Serial console and boot configuration).

Connect the power supply and verify the sliders are in the position Normal Boot (3) and Normally Off (4). Press the Power Button (5) to power HAIKOU CB-MINI-ITX. You will see the boot progress and later on a login prompt on the serial interface. If the display is connected, video output will follow shortly after.

Fig. 2.2: Serial console and boot configuration

3 Using the DEVKIT

This chapter provides instructions for using HAIKOU CB-MINI-ITX, such as booting and how to configure and use I/O peripherals (e.g. serial console, Ethernet).

3.1 HAIKOU CB-MINI-ITX Overview

An overview of the available connectors and devices on HAIKOU CB-MINI-ITX is shown below.

Note: RINGNECK SOM-PX30-uQ7 does not support HDMI and PCIe x4 (they are shown with a * in the next figure).

Fig. 3.1: HAIKOU CB-MINI-ITX with RINGNECK SOM-PX30-uQ7 (connectors marked with a * are not supported)

3.2 Power Supply

HAIKOU CB-MINI-ITX can operate with a single 12V DC power supply.

Fig. 3.2: 12V Power connector

Power can be controlled manually from the board using the Power control buttons and switches, located on the lower right side of the board (see Section 3.1 HAIKOU CB-MINI-ITX Overview).

Depending on the setting of Power Mode (Normally On / Normally Off) switch, HAIKOU CB-MINI-ITX will boot as soon as it receives power.

3.3 Control Buttons and Switches

The control buttons (see Fig. 3.1 HAIKOU CB-MINI-ITX with RINGNECK SOM-PX30-uQ7) provide the following functionality:

- Power toggles the module power supply.
- Reset triggers a module reset.
- Batlow, Sleep and Wake are routed to GPIOs on the uQ7 module.

Several slider switches are located on the lower left:

- LID SW is routed to a GPIO on the module, simulates lid open/close.
- Power Mode (Normally On / Normally Off), as described above, sets the state after power loss.
- BOOT SW (BIOS Disable / Normal Boot) forces SD card boot or the normal boot order, respectively.

3.4 CPU Fan

Operation in high environmental temperatures may require a CPU fan. The fan connector is located next to the bottom right corner of the Q7 expansion area.

Fig. 3.3: Fan connector

Note: The fan is only necessary in high ambient temperatures. Under normal conditions RINGNECK SOM-PX30-uQ7 operates passively cooled.

3.5 Boot Order

The used boot order of RINGNECK SOM-PX30-uQ7 module depends on the value of the BIOS_DISABLE# signal. On HAIKOU CB-MINI-ITX this signal can be set using a slider switch (B00T SW), with the two positions labeled Normal Boot, and BIOS Disable.

As shown in the table below, the BIOS Disable position disables the eMMC storage device:

	Normal Boot	BIOS Disable
1	eMMC storage	SD card
2	SD card	USB loader
3	USB loader	

If no bootloader is found on any storage device, RINGNECK SOM-PX30-uQ7 will go into USB loader mode, showing up as a USB device on the USB-OTG port.

The electrical state of the BIOS_DISABLE# signal for both slider positions is shown below:

Slider Position	BIOS_DISABLE# signal
Normal Boot	Floating (on-module pull-up to 3.3V)
BIOS Disable	GND

3.6 USB Serial Console

HAIKOU CB-MINI-ITX contains an on-board Silicon Labs CP2102N USB-serial converter. Connect the included Micro-USB cable to the Micro-USB jack labeled USB-UART Bridge:

Fig. 3.4: USB UART

The serial converter does not require additional drivers on Windows and Linux.

For macOS, drivers are available from Silicon Labs: https://www.silabs.com/products/development-tools/ software/usb-to-uart-bridge-vcp-drivers

RINGNECK SOM-PX30-uQ7 has two external UARTs:

- UARTO is, by default, used for the serial console for interactive login.
- UART1 is unused by default and can be freely used for machine-to-machine communications or other purposes.

The switch UART0 / UART1 cross-switches UART0 and UART1 between the RS232 / RS485 jack and the onboard USB-serial converter:

Switch Position	RS232 / RS485 jack connected to:	USB-serial converter connected to:
UART0	UART0 (interactive console)	UART1
UART1	UART1	UART0 (interactive console)

For interactive login through the USB-serial converter, make sure the switch is on the UART1 position.

Note: UART1 is the name of the UART exposed on HAIKOU CB-MINI-ITX. It is actually connected to the UART5 controller on the PX30 SoC.

Incidentially, UARTO on HAIKOU CB-MINI-ITX is connected to the UARTO controller on the PX30 SoC.

Picocom can be used to connect via the serial line (assuming the USB-serial converter is USB0):

picocom -b 115200 /dev/ttyUSB0

Note: Make sure to disable software flow-control (XON/XOFF). Otherwise serial input may not be recognized.

After system boot-up, the login console appears on the terminal:

You can log in as root with password root.

3.7 RS-232 and RS-485

To connect via RS-232 or RS-485, connect to the RS232 / RS485 jack on HAIKOU CB-MINI-ITX.

Fig. 3.5: RS-232 connector

The switch labeled RS-232 / RS-485 selects between RS-232 and RS-485 mode on the jack.

In RS-485 mode, the switch labeled Full Duplex / Half Duplex selects full- or half-duplex mode, respectively. It has no effect in RS-232 mode, which is always full-duplex.

3.8 TTL UART

UARTO and UART1 are also available through the pin headers P12 UARTO and P30 UART1 next to the RS232 / RS485 jack. The signal level is 3.3V.

3.9 Ethernet

RINGNECK SOM-PX30-uQ7 has built-in Fast Ethernet (100Mbit/s) routed to a standard RJ-45 jack on HAIKOU CB-MINI-ITX.

Fig. 3.6: Ethernet jack

The SD card that is shipped with the EVK is configured to automatically retrieve an IP address via DHCP and provides SSH login on port 22.

3.10 SD-Card

RINGNECK SOM-PX30-uQ7 supports UHS SD cards and maximum writing speed on the SD card is 50MB/s. The practical writing and reading speeds depend on the capabilities of the inserted SD card.

Fig. 3.7: SD card reader

3.11 USB Interfaces

RINGNECK SOM-PX30-uQ7 provides four USB ports:

- 1x USB 2.0 OTG
- 3x USB 2.0 Host

Fig. 3.8: USB 2.0 OTG port (dual-role port: can be used as a host or device interface)

Fig. 3.9: USB 2.0 host ports

3.11.1 Connecting an External USB Drive

To connect a USB drive, plug it into one of the USB ports. The system should recognize the drive immediately. Check the kernel log to find the device name:

dmesg -f

You will be able to mount its partitions (assuming mapping to /dev/sdb1):

mkdir /mnt/usb1
mount /dev/sdb1 /mnt/usb1
ls /mnt/usb1

3.12 Display and Camera

RINGNECK SOM-PX30-uQ7 supports display output on the LVDS A interface and the camera on the LVDS B interface.

For MIPI-DSI and MIPI-CSI, the Qseven LVDS pins are used. Those pins are routed to the Video connector. This expansion slot uses a PCIe connector as mechanical connection, which allows easy development of adapter boards for various different display types.

Qseven Port	Function	Alternate Function
LVDS A	MIPI-DSI	LVDS
LVDS B	MIPI-CSI	

Fig. 3.10: Video connector pinout

The kernel devicetree defines the used display configuration. Example device trees for various output configurations are provided with the Board Support Package.

To specify which devicetree should be loaded on boot, edit the configuration variable FDT in the file /boot/ extlinux.conf. For example to enable support for DEVKIT ADDON CAM-TS-A01 write:

FDT /boot/px30-ringneck-haikou-video-demo.dtb

Note: For systems using FIT images (such is the case for Yocto images), the kernel variable should be edited instead:

kernel /fitImage#conf-rockchip_px30-ringneck-haikou-video-demo.dtb

Filename	Functions
px30-ringneck-haikou.dtb	
px30-ringneck-haikou-video-demo.dtb	Touchscreen display, camera Requires Video Demo adapter

3.13 RTC

RINGNECK SOM-PX30-uQ7 contains a real-time clock (RTC) on-module.

Note: This functionality is implemented in the optional Mule companion controller (see Section 12.4.4 Companion Controller 1 and Section 12.4.5 Companion Controller 2).

The RTC is read by the kernel on boot-up and used to set the system clock.

To check the RTC value, use hwclock:

```
$ hwclock
Thu 22 Oct 2022 01:49:20 PM CEST -0.826662 seconds
```

The RTC will be automatically set to the system clock on shutdown, so you can set the system clock using the date command and reboot to update the RTC:

```
date --set 2022-10-22
date --set 04:12:33
```

You can also update the RTC immediately, again with hwclock:

hwclock -w

3.14 SPI and I2C

SPI and I2C interfaces are both available on the pin header labeled SPI+I2C+1-Wire. RINGNECK SOM-PX30-uQ7 does not support 1-Wire.

Additional I2C buses are available on the SMBUS header. Note that SMB_DAT, SMB_CLK, SMB_ALERT# are not supported by RINGNECK SOM-PX30-uQ7 (shown in thin font in Fig. 3.12).

Fig. 3.11: I2C and SPI header

Fig. 3.12: SMBUS header

For I2C, the i2c-tools package is available in Debian

apt-get install i2c-tools

3.14.1 Linux I2C Bus Numbering

Linux identifies each I2C bus by a bus number. The table below shows the mapping between Q7 names, Linux bus number and HAIKOU CB-MINI-ITX header.

Q7 signals	Linux bus #	Header(s)	Label o Header	'n
GP2_I2C_DAT/LVDS_DID_DAT GP2_I2C_CLK/LVDS_DID_CLK	1	SMBus & Video con- nector	DID_DAT DID_CLK	
GP0_I2C_DAT GP0_I2C_CLK	2	SPI+I2C+1-Wire	I2C_DAT I2C_CLK	
eDP0_HPD#/LVDS_BLC_DAT eDP1_HPD#/LVDS_BLC_CLK	3	SMBus & Video con- nector	BLC_DAT BLC_CLK	

The other I2C buses (as reported by i2cdetect -l) are internal to the module and not routed to the Q7 connector.

3.15 GPIOs

Eight GPIOs are provided on the pin header labeled GPIO.

The location on HAIKOU CB-MINI-ITX is displayed below:

Fig. 3.13: GPIO header

The GPIO numbers printed on the board refer to numbers used in the Qseven specification. They are different than the ones used in Linux via /sys/class/gpio.

The mapping is shown in the following table:

Q7 signal	CPU pin	Linux GPIO #
GPI00	GPI03_C6	118
GPI01	GPI03_D0	120
GPI02	GPI03_C7	119
GPI03	GPI03_D1	121
GPI04	GPI03_C0	112
GPI05	GPI03_A2	98
GPI06	GPI03_A1	97
GPI07	GPI02_B6	78

To calculate the Linux GPIO # for CPU pins that are not listed in this table, use the following formula:

n = (block_number * 32) + (sub_block_number * 8) + index

Where:

- block_number ... index of the block number
- sub_block_number ... the alphabetical index of the block name, minus 1
- index ... the pin number within the block

Example:

GPI03_C6 \rightarrow (3 * 32) + (2 * 8) + 6 = 118

To enable a GPIO, write the Linux GPIO # to the special export file:

```
$ echo 118 > /sys/class/gpio/export
$ cat /sys/class/gpio/gpio118/direction
in
$ cat /sys/class/gpio/gpio118/value
0
```

To set the direction to output, write out in the GPIO's direction file:

```
echo out > /sys/class/gpio/gpio118/direction
echo 1 > /sys/class/gpio/gpio118/value
```

The GPIO will be set to a value of 1 (high at 3.3V).

3.16 Audio

HAIKOU CB-MINI-ITX provides two audio connectors for input and output. Line-in is on top and Headphones is on bottom of the audio connector.

Note: The codec on HAIKOU CB-MINI-ITX only supports a sample rate 48kHz. This restriction only applies to this specific codec on HAIKOU CB-MINI-ITX.

The I2S bus on RINGNECK SOM-PX30-uQ7 module supports a sample rate up to 192kHz.

Fig. 3.14: Audio input/output port

Additionally, an expansion connector for I2S audio is available on the bottom row of the carrier board:

Fig. 3.15: Connecting to the audio expansion connector

3.17 CAN Bus

HAIKOU CB-MINI-ITX provides a CAN connector on the bottom row.

Fig. 3.16: CAN header

Note: CAN feature is only available on RINGNECK SOM-PX30-uQ7 with an STM32, see (Section 12.4.4 Companion Controller 1).

3.18 CTRL I/O Connector

HAIKOU CB-MINI-ITX provides signals for watchdog trigger in- and output, SoM PMIC power-on input, reset and external display power enable.

Fig. 3.17: CTRL I/O header

3.19 MISC Connector

HAIKOU CB-MINI-ITX provides signals for thermal overheat of external hardware and the processor, utility signals for SD and GPI00.

Fig. 3.18: MISC header

3.20 JTAG Connector

The board provides UPDI signals on the JTAG connector. RINGNECK SOM-PX30-uQ7 does not support JTAG, but the ATtiny (see Section 12.4.5 Companion Controller 2) can be flashed over JTAG connector pins.

Fig. 3.19: JTAG header

JTAG header	Function
TDI	UPDI-TX
TDO	UPDI-RX

4 Software Overview

This chapter provides instructions for compiling and deploying the BSP (Board Support Package) software to RINGNECK SOM-PX30-uQ7.

4.1 Supported Distributions

Two of the most popular embedded systems distributions are supported. The following chapters describe how to build a disk image for each of them:

- Debian: Section 5 Debian image guide
- Yocto: Section 6 Building a Yocto image

4.2 Compiling Linux Applications

The easiest option is to compile your applications directly on a module running Debian. Install the gcc package and related utilities and you are good to go:

sudo apt-get install build-essential

The second option is to cross-compile your applications on a host PC. The compiler that was installed in Section 5.1 Prepare the host PC is suitable.

5 Debian image guide

As opposed to Yocto, Debian does not provide a completely integrated build experience by itself. Linux kernel and U-Boot have to be compiled manually and copied to the appropriate directory to be picked up by Debian build system.

This chapter will go through all neccessary steps, finally building a complete image using the debos Debian image builder. The result will be a fully-functional Debian system.

Alternatively, prebuilt images can be downloaded from https://downloads.embedded.cherry.de/ringneck/.

At the time of writing this document, the following Debian image variants are available for RINGNECK SOM-PX30-uQ7:

- Debian 12 Bookworm,
- Debian 12 Bookworm with Phosh graphical shell.

Note: While Debian is a great tool for fast prototyping of your product, it is highly recommended to use a distribution/image tailored to your need. This can be achieved by Yocto (Section 6 Building a Yocto image) or Buildroot for example.

5.1 Prepare the host PC

The debos Debian OS Builder is only available for Debian and Debian-based distributions (like Ubuntu). This chapter assumes you use Debian or a Debian-based distribution as the host PC.

Install packages for compiling the parts and the complete image:

sudo apt-get -y install debos git build-essential gcc-aarch64-linux-gnu make bison bc flex \ libssl-dev device-tree-compiler python3-dev python3-pkg-resources swig fdisk bmap-tools

As debos internally uses kvm virtualization, your user must be a member of the kvm group:

sudo adduser "**\$(**id -un)" kvm

Log out and back for the change to take affect. Then verify that kvm is listed in your groups:

id -Gn

5.2 Compile the ATF

Get the source code and compile the Arm Trusted Firmware as follows:

```
# Set up cross-compilation
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
# Download the source code
git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
(
    cd trusted-firmware-a || return
# Use most recent release
LAST_ANNOTATED_V_TAG_FROM_MASTER=$(git describe --abbrev=0 --match "v?*.?*.?*")
```

(continues on next page)

(continued from previous page)

```
# Find all tags from different branches that contain that last tag reachable from master.
# This will return lts tags, of which we want to take the latest available.
# If no LTS tag, take the latest non-rc tag reachable from master.
LAST_LTS_TAG=$(git tag --sort -version:refname --contains "$LAST_ANNOTATED_V_TAG_FROM_MASTER" 'lts-
→v?*.?*.' | head -1)
TAG=${LAST_LTS_TAG:-$LAST_ANNOTATED_V_TAG_FROM_MASTER}
qit checkout "$TAG"
TF_LDFLAGS=""
# Fix for aarch64-linux-gnu-ld 2.39+ and TF-A prior to v2.9
# Fix available in commit 1f49db5f25cd ("feat(build): add support for new binutils versions")
if "${CROSS_COMPILE}ld" -no-warn-rwx-segments -v >/dev/null 2>&1; then
        TF_LDFLAGS="-z noexecstack --no-warn-rwx-segments"
fi
# Compile
TF_LDFLAGS="$TF_LDFLAGS" make PLAT=px30 bl31
)
# Make the resulting file available to later steps
export BL31="$PWD/trusted-firmware-a/build/px30/release/bl31/bl31.elf"
```

This step should take under 1 minute total.

5.3 Compile U-Boot

Note: The variable BL31 must be already set as described in Section 5.2 Compile the ATF .

Get the source code and compile the U-Boot bootloader as follows:

```
# Set up cross-compilation
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
# Download the source code
git clone https://git.embedded.cherry.de/ringneck-u-boot.git
(
    cd ringneck-u-boot || return
# Compile
make ringneck-px30_defconfig
make -j"$(nproc)"
)
# Make the resulting file available to later steps
export RINGNECK_UBOOT_DIR="$PWD/ringneck-u-boot"
```

This step should take about 1 minute total.

5.4 Compile the Linux kernel

Get the source code and compile the Linux kernel as follows:

```
# Set up cross-compilation
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
# Download the source code
git clone https://git.embedded.cherry.de/ringneck-linux.git
(
    cd ringneck-linux || return
# Compile
make ringneck-px30_defconfig
make -j"$(nproc)"
## Make sure there are no modules from older builds, otherwise may pollute rootfs
## if using debos-recipes instructions.
rm --recursive --force overlay/
make -j"$(nproc)" INSTALL_MOD_PATH=overlay modules_install
)
# Make the resulting files available to later steps
export RINGNECK_LINUX_DIR="$PWD/ringneck-linux"
```

The time required for this step heavily depends on your internet connection and CPU power. On a quad-core 2.9GHz machine with an 1Gb/s internet connection, it takes about 20 minutes total.

Warning: It is essential the kernel modules installed on the system are built from the exact same sources as the kernel Image itself or the modules will fail to be detected by the kernel.

Note: One can install new modules without needing to recompile the debos image entirely by running the following command:

```
export IP=10.11.12.13 # set to the IP address of the device
rsync --delete --recursive overlay/lib/modules/ root@"$IP":/lib/modules
```

Update the kernel Image if there was some change made to it so that it will find the new modules upon reboot.

Reboot for the new modules to be loaded.

5.5 Building the debos image

5.5.1 Prepare required components

Note: The variables RINGNECK_UB00T_DIR and RINGNECK_LINUX_DIR must be already set as described in Section 5.3 Compile U-Boot and Section 5.4 Compile the Linux kernel, respectively.

Get the source code for the debos recipe and copy necessary components built in previous steps:

```
# Download the source code
git clone https://git.embedded.cherry.de/debos-recipes.git
cd debos-recipes || return
# Copy Linux binaries into the ``ringneck`` folder
```

(continues on next page)

```
cp "$RINGNECK_LINUX_DIR"/arch/arm64/boot/Image ringneck/overlay/boot/
## Match dtb and dtbo
cp "$RINGNECK_LINUX_DIR"/arch/arm64/boot/dts/rockchip/px30-ringneck*.dtb* ringneck/overlay/boot
rm --recursive --force ringneck/overlay/lib/modules
mkdir --parents ringneck/overlay/lib/modules
cp --archive "$RINGNECK_LINUX_DIR"/overlay/lib/modules/ ringneck/overlay/lib/
## Remove known problematic symlinks as debos would dereference them
rm ringneck/overlay/lib/modules/*/build
rm ringneck/overlay/lib/modules/*/source
# Copy U-Boot binaries into the ``ringneck`` folder
cp "$RINGNECK_UB00T_DIR"/u-boot-rockchip.bin ringneck
```

5.5.2 Build a complete image

Different variants of Debian images are available. You can build the one of your choice or all of them. Default variant is Debian 12 Bookworm. Other variants can be chosen by setting the debos_variant environment variable when running build.sh.

Depending on your host PC and internet connection, this step should complete in about 5-10 minutes.

The resulting image is a file called sdcard-ringneck-debos-VARIANT.XXX.YYY.img and, for convenience, the symlink sdcard-ringneck-debos-VARIANT.img that always points to the latest version.

Debian 12 Bookworm

```
# Build the image
build_board=ringneck ./build.sh
# Or: Build the image using podman (For host PCs not using Debian)
# build_board=ringneck debos_host=podman ./build.sh
#
# Make the resulting image available to later steps
export SDCARD_IMG="$PWD/sdcard-ringneck-debos-bookworm.img"
```

Note: When running inside a virtual machine that does not support nesting, you may get an error like this:

open /dev/kvm: no such file or directory

In this case, prepend debos_host=chroot to the build.sh command, resulting in:

debos_host=chroot build_board=ringneck ./build.sh

The debos_host=chroot mode uses sudo internally as it requires root permissions.

Debian 12 Bookworm with Phosh graphical shell

This image variant is targeted for the Haikou-Video-Demo. Please see the DEVKIT ADDON CAM-TS-A01 User Manual for more information about the DEVKIT ADDON CAM-TS-A01.

More details about the Phosh graphical shell can be found in the Phosh graphical shell section.

```
# Build the image
build_board=ringneck debos_variant=bookworm-phosh ./build.sh
# Or: Build the image using podman (For host PCs not using Debian)
# build_board=ringneck debos_variant=bookworm-phosh debos_host=podman ./build.sh
```

(continues on next page)

Make the resulting image available to later steps
export SDCARD_IMG="\$PWD/sdcard-ringneck-debos-bookworm-phosh.img"

Note: When running inside a virtual machine that does not support nesting, you may get an error like this:

open /dev/kvm: no such file or directory

In this case, prepend debos_host=chroot to the build.sh command, resulting in:

debos_host=chroot build_board=ringneck ./build.sh

The debos_host=chroot mode uses sudo internally as it requires root permissions.

6 Building a Yocto image

The Yocto Project is an open-source project that helps building Linux-based distributions, mainly for embededded products. CHERRY provides a minimal BSP layer to allow building Yocto images for the company's modules. An extended layer is also provided for a less bare experience, see instructions in Section 6.3 Extended meta layer. Upon request, access can be given to a more featureful "demonstration" layer which provides hardware and software validation scripts as well as demo applications.

This user guide does not aim at getting the user familiar with development with the Yocto Project but rather help them setup their build environment to create a basic Yocto image that can be used on one of CHERRY Embedded Solutions modules.

The Yocto project provides an open source Linux build framework, which allows to create customized build environments for embedded systems.

Yocto consists of the following parts:

- The Yocto Project tools,
- Reference Linux distribution (Poky),
- Build system (co-maintained with OpenEmbedded),

There exists extensive documentation for the Yocto Project and BitBake.

The Yocto Project releases a new version twice a year and some versions are maintained for a longer time when marked as LTS (Long-Term Support). Such is the case of Kirkstone (4.0), supported until at least April 2024. CHERRY highly recommends to use LTS versions and update to a newer version once its support has reached end-of-life, to benefit from bug fixes, security fixes, miscellaneous improvements and additional features.

6.1 Prerequisites

While the Yocto Project supports many different build systems, CHERRY currently only tests building on Debian 11 (Bullseye).

The required packages for Debian are listed in the documentation and can be installed with the following command:

```
sudo apt-get install -y --no-install-recommends gawk wget git diffstat unzip \
  texinfo gcc build-essential chrpath socat cpio python3 python3-pip python3-venv \
  python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 \
  libegl1-mesa libsdl1.2-dev xterm python3-subunit mesa-common-dev zstd \
  liblz4-tool file
```

6.2 BSP meta layer

The Yocto Project BSP meta layer can be found at https://git.embedded.cherry.de/yocto-layers/ meta-theobroma-systems-bsp.git/.

It contains the minimal configuration and recipe append files (bbappend) necessary to build a minimal working image. It is meant to be a base upon which to build and thus many tools are purposefully missing.

6.2.1 Initial setup

Clone the BSP meta layer and its dependencies from a new directory called yocto:

```
mkdir yocto
cd yocto || return
git clone https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git -b kirkstone
git clone https://git.yoctoproject.org/poky -b kirkstone-4.0.10
git clone https://git.yoctoproject.org/meta-arm -b yocto-4.0.2
git clone https://git.yoctoproject.org/meta-rockchip -b kirkstone
git clone https://git.openembedded.org/meta-openembedded -b kirkstone
```

The following directory layout should be observed:

Note: It is essential that the Yocto layers are checked out on a branch that supports the same release as the others, otherwise there may be some unexpected issues. With the aforementioned instructions, the layers have been checked out to a branch supporting the Yocto Project Kirkstone (4.0) release.

One can check if a branch supports a release by looking into conf/layer.conf and look for the LAY-ERSERIES_COMPAT_* variable. All layers should have the same one in common, here "kirkstone".

6.2.2 Initializing build environment

Once the layers have been properly cloned in their appropriate branch, the build environment needs to be initialized. This can be done by running the following command:

```
# shellcheck disable=SC3046,SC1091
source poky/oe-init-build-env build
```

This will initialize the build environment by making the bitbake build tool available in the current shell and creating a build directory where temporary and final build artifacts will be stored.

The following directory layout should be observed:

The first time the command is run, it'll create a new build directory called build and add the appropriate configuration files. On the later runs, if the directory still exists, the command will only configure the terminal environment and not change anything in the build directory. This makes it perfectly safe to run the command multiple times, from different terminals for example.

Note: Once the current terminal is closed or a new one is opened, this command should be re-executed to be able to interact again with the Yocto Project tools.

The Yocto Project then needs to be configured to include layers to find new recipes or configuration files, which is essential to build new pieces of software or compile for a specific hardware target system.

This can be done with the bitbake-layers tool:

```
bitbake-layers add-layer ../meta-arm/meta-arm-toolchain
bitbake-layers add-layer ../meta-arm/meta-arm
bitbake-layers add-layer ../meta-rockchip
bitbake-layers add-layer ../meta-openembedded/meta-oe
bitbake-layers add-layer ../meta-openembedded/meta-python
bitbake-layers add-layer ../meta-theobroma-systems-bsp
```

6.2.3 Building a minimal image

To build a bootable artifact, BitBake will be called with the specified machine and target image:

MACHINE="ringneck-haikou" bitbake core-image-minimal

Note: Technically speaking, the MACHINE variable could be set in build/conf/local.conf file once and for all. If possible, CHERRY recommends passing the variable explicitly in the command directly as this makes it more visible to the user and also allows to easily build for multiple machines without modifying a file in-between.

The build process can take several hours depending on the capabilities of the build machine and the user's Internet connection.

Note: If the Bitbake process needs to be stopped for any reason, a SIGINT (Ctrl + c) signal can be sent **once**. Bitbake will gracefully close down upon reception of this signal. This graceful shutdown can take a lot of time depending on the tasks that are currently being executed. It is **highly** recommended to not send this signal more than once, failing to do so may hinder next Bitbake commands.

The artifacts can be found after some time in build/tmp/deploy/images/ringneck-haikou/ directory. A flashable image is one whose extension is .wic, e.g. core-image-minimal-ringneck-haikou-20221021134027.rootfs.wic.

Make the resulting image available for later steps:

```
export SDCARD_IMG="$PWD/build/tmp/deploy/images/ringneck-haikou/core-image-minimal-ringneck-haikou.
→wic"
```

6.2.4 Building with kas

kas is a setup tool for Bitbake-based projects, such as the Yocto Project, which aims to replace the commands listed above for a simpler, more automated, setup and creation of images.

CHERRY provides a kas configuration file kas-theobroma.yml in the BSP meta layer for convenience.

kas can be installed on the build machine with the following command:

sudo apt-get install -y --no-install-recommends kas

Note: It is also available as a Python package and installable with:

```
python3 -m venv venv
# shellcheck disable=SC3046,SC1091
source venv/bin/activate
python3 -m pip install kas==4.0
```

The Section 6.2.1 Initial setup and Section 6.2.2 Initializing build environment can then be replaced by the following two commands:

```
mkdir yocto
cd yocto || return
git clone https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git -b kirkstone
kas checkout meta-theobroma-systems-bsp/kas-theobroma.yml
```

The Section 6.2.3 Building a minimal image can now be replaced with:

KAS_MACHINE="ringneck-haikou" kas build meta-theobroma-systems-bsp/kas-theobroma.yml

Note: kas is also available in an OCI container form on GitHub container registry.

It is still recommended to install kas through pip but then use its kas-container wrapper script to start the container properly. E.g. to replace the last command to build an image with kas one can call this instead:

```
python3 -m venv venv
# shellcheck disable=SC3046,SC1091
source venv/bin/activate
python3 -m pip install kas==4.0
KAS_IMAGE_VERSION="4.0" KAS_MACHINE="ringneck-haikou" kas-container build meta-theobroma-systems-
→bsp/kas-theobroma.yml
```

6.3 Extended meta layer

The Yocto Project extended layer can be found at https://git.embedded.cherry.de/yocto-layers/ meta-theobroma-systems-extended.git/.

In addition to the minimal features, this layer includes the network manager, and many more features will be added soon.

6.3.1 Initial setup

Clone the Extended layer and its dependencies from a new directory called yocto:

```
mkdir yocto
cd yocto || return
git clone https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git -b_
→kirkstone
git clone https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git -b kirkstone
git clone https://git.yoctoproject.org/poky -b kirkstone-4.0.10
git clone https://git.yoctoproject.org/meta-arm -b yocto-4.0.2
git clone https://git.yoctoproject.org/meta-rockchip -b kirkstone
git clone https://git.openembedded.org/meta-openembedded -b kirkstone
```

The following directory layout should be observed:

Note: It is essential that the Yocto layers are checked out on a branch that supports the same release as the others, otherwise there may be some unexpected issues. With the aforementioned instructions, the layers have been checked out to a branch supporting the Yocto Project Kirkstone (4.0) release.

One can check if a branch supports a release by looking into conf/layer.conf and look for the LAY-ERSERIES_COMPAT_* variable. All layers should have the same one in common, here "kirkstone".

6.3.2 Initializing build environment

Once the layers have been properly cloned in their appropriate branch, the build environment needs to be initialized. This can be done by running the following command:

```
# shellcheck disable=SC3046,SC1091
source poky/oe-init-build-env build
```

This will initialize the build environment by making the bitbake build tool available in the current shell and creating a build directory where temporary and final build artifacts will be stored.

The following directory layout should be observed:

The first time the command is run, it'll create a new build directory called build and add the appropriate configuration files. On the later runs, if the directory still exists, the command will only configure the terminal environment and not change anything in the build directory. This makes it perfectly safe to run the command multiple times, from different terminals for example.

Note: Once the current terminal is closed or a new one is opened, this command should be re-executed to be able to interact again with the Yocto Project tools.

The Yocto Project then needs to be configured to include layers to find new recipes or configuration files, which is essential to build new pieces of software or compile for a specific hardware target system.

This can be done with the bitbake-layers tool:

bitbake-layers add-layer	/meta-arm/meta-arm-toolchain
bitbake-layers add-layer	/meta-arm/meta-arm
bitbake-layers add-layer	/meta-rockchip
bitbake-layers add-layer	/meta-openembedded/meta-oe
bitbake-layers add-layer	/meta-openembedded/meta-python
bitbake-layers add-layer	/meta-openembedded/meta-networking
bitbake-layers add-layer	/meta-theobroma-systems-bsp
bitbake-layers add-layer	/meta-theobroma-systems-extended

6.3.3 Building an image

To build a bootable artifact, BitBake will be called with the specified machine and target image:

MACHINE="ringneck-haikou" bitbake theobroma-extended-image

Note: Technically speaking, the MACHINE variable could be set in build/conf/local.conf file once and for all. If possible, CHERRY recommends passing the variable explicitly in the command directly as this makes it more visible to the user and also allows to easily build for multiple machines without modifying a file in-between.

The build process can take several hours depending on the capabilities of the build machine and the user's Internet connection.

Note: If the Bitbake process needs to be stopped for any reason, a SIGINT (Ctrl + c) signal can be sent **once**. Bitbake will gracefully close down upon reception of this signal. This graceful shutdown can take a lot of time depending on the tasks that are currently being executed. It is **highly** recommended to not send this signal more than once, failing to do so may hinder next Bitbake commands.

The artifacts can be found after some time in build/tmp/deploy/images/ringneck-haikou/ directory. A flashable image is one whose extension is .wic, e.g. theobroma-extended-image-ringneck-haikou-20221021134027.rootfs.wic.

Make the resulting image available for later steps:

export SDCARD_IMG="\$PWD/build/tmp/deploy/images/ringneck-haikou/theobroma-extended-image-ringneck-→haikou.wic"

6.3.4 Building with kas

kas is a setup tool for Bitbake-based projects, such as the Yocto Project, which aims to replace the commands listed above for a simpler, more automated, setup and creation of images.

CHERRY provides a kas configuration file kas-theobroma.yml in the BSP meta layer for convenience.

kas can be installed on the build machine with the following command:

sudo apt-get install -y --no-install-recommends kas

Note: It is also available as a Python package and installable with:

```
python3 -m venv venv
# shellcheck disable=SC3046,SC1091
source venv/bin/activate
python3 -m pip install kas==4.0
```

The Section 6.3.1 Initial setup and Section 6.3.2 Initializing build environment can then be replaced by the following two commands:

```
mkdir yocto
cd yocto || return
git clone https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git -b_
→kirkstone
kas checkout meta-theobroma-systems-extended/kas-theobroma.yml
```

The Section 6.3.3 Building an image can now be replaced with:

KAS_MACHINE="ringneck-haikou" kas build meta-theobroma-systems-extended/kas-theobroma.yml

Note: kas is also available in an OCI container form on GitHub container registry.

It is still recommended to install kas through pip but then use its kas-container wrapper script to start the container properly. E.g. to replace the last command to build an image with kas one can call this instead:

```
python3 -m venv venv
# shellcheck disable=SC3046,SC1091
source venv/bin/activate
python3 -m pip install kas==4.0
KAS_IMAGE_VERSION="4.0" KAS_MACHINE="ringneck-haikou" kas-container build meta-theobroma-systems-
→extended/kas-theobroma.yml
```

7 Deploy a disk image

This chapter describe how to write a disk image as generated in one of the previous chapters using Yocto or Debian to the module.

Note: The variable SDCARD_IMG must be already set as described in respective chapter.

Warning: Avoid having the disk image on both the SD Card and the internal eMMC of the module.

As the Linux kernel on the module uses PARTLABEL and PARTUUID to identify partitions to mount, it will be unpredictable whether the SD Card or the internal eMMC is used.

7.1 Deploy on SD Card

Insert an SD card into the host PC and check dmesg -w to find out the device name that was used.

Then, run this command, replacing /dev/sdX with the real device name:

sudo dd bs=1M conv=nocreat oflag=direct status=progress if="\$SDCARD_IMG" of=/dev/sdX

7.2 Deploy on internal eMMC

7.2.1 Compile rkdeveloptool

To write the image directly onto the on-board eMMC, the flashing tool rkdeveloptool is used, and it must be compiled on the host PC:

```
# Install compile dependencies
sudo apt-get -y install git libudev-dev libusb-1.0-0-dev dh-autoreconf pkg-config build-essential
# Download rkdeveloptool source code
git clone https://github.com/rockchip-linux/rkdeveloptool.git
cd rkdeveloptool || return
# Compile rkdeveloptool
autoreconf -i
CPPFLAGS=-Wno-format-truncation ./configure
make
# Download miniloaders used for flashing
git clone https://github.com/rockchip-linux/rkbin.git tools/rk_tools
# Build miniloader binaries
(
cd tools/rk_tools/ || return
./tools/boot_merger RKBOOT/PX30MINIALL.ini
)
# Make the resulting files available to later steps
export RKDEVELOPTOOL_DIR="$PWD"
```

This step should take about 1 minute total.

7.2.2 Enter USB flashing mode

To enter the USB flashing mode, make sure the BOOT SW slider (see Fig. 3.1 HAIKOU CB-MINI-ITX with RING-NECK SOM-PX30-uQ7) is in BIOS Disable mode and there's no SD card inserted in HAIKOU CB-MINI-ITX.

Then, insert a micro-USB cable into the USB-OTG port (see Fig. 3.8 USB 2.0 OTG port (dual-role port: can be used as a host or device interface)) on HAIKOU CB-MINI-ITX and into a USB port of your host PC.

Then, power cycle the device by unplugging and replugging the power supply or by pressing the Reset button. The lsusb command on your host PC should return the following:

```
$ lsusb -d 2207:330d
Bus 001 Device 028: ID 2207:330d Fuzhou Rockchip Electronics Company
```

Now, put the BOOT SW slider back into the Normal Boot mode.

7.2.3 Flash the eMMC

Warning: The BOOT SW slider must be back in Normal Boot mode, otherwise the eMMC is inaccessible and stays empty. You will see rkdeveloptool making improbably quick write progress in this case.

To write the image file path stored in the variable SDCARD_IMG to the on-board eMMC, run:

```
cd "$RKDEVELOPTOOL_DIR" || return
sudo ./rkdeveloptool db tools/rk_tools/px30_loader_v*.bin && sleep 1
sudo ./rkdeveloptool wl 0 "$SDCARD_IMG"
sudo ./rkdeveloptool rd
```

This step should take about 1 minute for the Debian image.

8 Wifi

RINGNECK SOM-PX30-uQ7 features an on-board Wifi module. This chapter shows how to connect to an existing Wifi network and how to flash the wifi firmware, should the need arise.

8.1 Antenna

The development kit includes an antenna compatible with the Wifi module. Other antennas can be used. The connector on the antenna must be one of:

- W.FL Series connector from Hirose
- MHF III connector from I-PEX
- AMMC connector from Amphenol

8.2 Connecting to a Wifi network

You can show the available wifi networks using:

nmcli dev wifi

Connect to a network using the following command (replace the network name and password as appropriate):

nmcli dev wifi connect "CHERRY Example Wifi" password "hello-px30"

You should get a message like:

Device 'wlan0' successfully activated with '79ef39fc-8f49-4719-a8d9-4d6d789bb815'.

You should have connectivity over Wifi now. You can check the IP address you received using:

ip addr show dev wlan0

Note: By default, nmcli is not available in our Yocto core-image-minimal image. However, it is available in our Yocto theobroma-extended-image image.

8.3 Flashing the wifi firmware

You need to have esptool.py installed on the module.

The wifi firmware consists of three files:

- bootloader.bin
- partition-table.bin
- eagle.bin

Save all three to the /tmp directory on the module.

Then flash the wifi module as shown below:

```
GPIO_BOOT=1 #GPIOO_A1
GPI0_EN=72 #GPI02_B0
echo ff380000.mmc > /sys/bus/platform/drivers/dwmmc_rockchip/unbind
echo sdio-pwrseq > /sys/bus/platform/drivers/pwrseq_simple/unbind
if [ ! -d "/sys/class/gpio/gpio$GPI0_BOOT" ]; then
        echo "$GPI0_BOOT" > /sys/class/gpio/export
fi
if [ ! -d "/sys/class/gpio/gpio$GPI0_EN" ]; then
        echo "$GPI0_EN" > /sys/class/gpio/export
fi
echo out > "/sys/class/gpio/gpio$GPI0_BOOT/direction"
echo out > "/sys/class/qpio/qpio$GPI0_EN/direction"
echo 0 > "/sys/class/gpio/gpio$GPI0_BOOT/value"
echo 0 > "/sys/class/gpio/gpio$GPI0_EN/value"
sleep 1
echo 1 > "/sys/class/gpio/gpio$GPI0_EN/value"
sleep 1
ESPT00L=$(PATH="/root/.local/bin/:$PATH" which esptool.py)
"$ESPT00L" -p /dev/ttyS3 -b 460800 --before default_reset --after hard_reset \
  --chip esp32 write_flash --flash_mode dio --flash_size detect --flash_freq 40m \
  Ox1000 /tmp/bootloader.bin \
  0x8000 /tmp/partition-table.bin \
  0x10000 /tmp/eagle.bin
sleep 1
echo 1 > "/sys/class/gpio/gpio$GPI0_BOOT/value"
echo 0 > "/sys/class/gpio/gpio$GPI0_EN/value"
sleep 1
echo 1 > "/sys/class/gpio/gpio$GPI0_EN/value"
echo "$GPI0_BOOT" > /sys/class/gpio/unexport
echo "$GPI0_EN" > /sys/class/gpio/unexport
echo sdio-pwrseq > /sys/bus/platform/drivers/pwrseq_simple/bind
echo ff380000.mmc > /sys/bus/platform/drivers/dwmmc_rockchip/bind
```

Note: On Debian, the esptool package provided by the package feed is too old. Instead, please install esptool software from pip:

apt-get -y install python3-pip pip3 install --user esptool

Note: By default, esptool is not available in our Yocto core-image-minimal image.

9 Serial Number & MAC Address

9.1 Serial Number

Each RINGNECK SOM-PX30-uQ7 has a unique serial number that can be read by software.

In U-Boot, the serial number is contained in the environment variable serial#. You can print it using the command:

printenv serial#

Under Linux, it is represented by a simple text file in /sys:

cat /sys/firmware/devicetree/base/serial-number

The serial number is fixed in hardware (derived from the SoC CPU ID) and cannot be modified.

9.2 MAC Address

By default, the MAC address of each module is a random value derived from the serial number. The properties of this default MAC address are:

- It is a Locally Administered Address: The U/L bit of the MAC address is set to 1
- It is not guaranteed to be globally unique
- The address is fixed for each module. It stays constant across reboots as it is deterministically derived from the serial number

To set your own Universally Administered Address, you overwrite the U-Boot environment variable ethaddr. On the U-Boot prompt, with XX:XX:XX:XX:XX:XX replaced by your MAC address:

setenv ethaddr XX:XX:XX:XX:XX:XX
saveenv

The MAC address can be queried from the U-Boot prompt using:

printenv ethaddr

To reset the MAC address to the default value, run:

env delete ethaddr saveenv

10 Mule Companion Controller

Mule Companion Controller is an on-board microcontroller, that provides additional features to the CPU. Mule is available in two variants:

- Companion Controller 1 (STM32)
- Companion Controller 2 (ATtiny)

Only one variant can be available on the board.

Both variants support almost the same set of features. The only difference is CAN support.

Feature set and usage manual of both variants are described in subsections below.

10.1 Companion Controller 1 (STM32)

Controller is based on STM32 microcontroller and provides additional features to the CPU, exposed via I2C and USB. It emulates standard ICs and does not need custom drivers on Linux.

Mule STM32 controller supports the following features:

- RTC
- Temperature sensor
- Fan controller
- CAN

For hardware details, please refer to Section 12.4.4 Companion Controller 1.

10.1.1 Internal connections

Mule STM32 controller is connected to SoC via I2C, USB and the following pins.

Function	CPU Pin	Linux GPIO #	
NRST	GPI03_A4	100	
BOOTO	GPI03_A5	101	

10.1.2 DFU mode

The USB DFU bootloader application provides access to the internal flash memory of STM32 microcontroller. To enter DFU mode:

- 1. Pull BOOTO pin high
- 2. Cycle reset Mule STM32 using NRST pin
- 3. The microcontroller will appear as a new USB device in Linux (vid:pid as 0483:df11)

To return to normal operation, BOOTO must be pulled low again to not enter DFU mode in the next power-cycle.

10.1.3 Flashing the STM32 firmware

For convenience, mule.sh tool is available for controlling and flashing the STM32 microcontroller. Executing the script, SoC resets microcontroller into DFU mode and then uploads the firmware binary to internal STM32 flash memory.

The tool is available here: https://git.embedded.cherry.de/som-tools.git/tree/mule.

To flash STM32 microcontroller using mule.sh, please follow the steps below.

- 1. Install mule.sh dependencies according to README.md
- 2. Upload mule.sh tool and mule.dfu firmware file to a device
- 3. Flash controller using the following command:

```
sudo ./mule.sh --flash mule.dfu
```

Note: It is highly recommended that one reboots the main SoC interacting with the companion microcontroller after flashing to make sure device drivers are properly initialized.

10.2 Companion Controller 2 (ATtiny)

Controller is based on ATtiny microcontroller and provides additional features to the CPU, exposed via I2C. This controller is a substitute for first controller, supports the same functions except CAN. As for the first controller, it emulates standard ICs and does not need custom drivers on Linux.

Mule ATtiny controller supports the following features:

- RTC
- Temperature sensor
- Fan controller

For hardware details, please refer to Section 12.4.5 Companion Controller 2.

10.2.1 Internal connections

Mule ATtiny controller is connected to SoC via I2C bus and the following pins.

Function	CPU Pin	Linux GPIO #
RST	GPI03_A4	100
BOOT	GPI03_A5	101

10.2.2 Flashloader mode

Flashloader mode allows writing to the internal ATtiny flash memory via I2C.

To enter flashloader mode:

- 1. Pull BOOT pin high
- 2. Cycle reset ATtiny using RST pin

10.2.3 Flashing the ATtiny firmware

The ATtiny microcontroller can be flashed from SoC through the I2C interface using i2c-flash tools. Executing the script, SoC resets microcontroller into flashloader mode and then transfers the binary that will be committed to flash.

Tools are available here: https://git.embedded.cherry.de/som-tools.git/tree/mule-attiny.

To flash ATtiny microcontroller, please follow the steps below.

- 1. Setup tool dependencies according to README.md
- 2. Flash controller using the following command:

```
FIRMWARE_BIN="/path/to/mule-attiny-app-i2c-v*.bin"
./i2c_flash.py -f "$FIRMWARE_BIN" -c 3 -g 5 -b 1 -rc 3 -rg 4
```

When using the flashing script, the bootloader version is printed to the output console. The version can also be read without flashing the device (WARNING: This resets the RTC logic) using:

./i2c_flash.py -c 3 -g 5 -b 1 -rc 3 -rg 4

without specifiying a firmware binary.

Note: It is highly recommended that one reboots the main SoC interacting with the companion microcontroller after using the flashing script to make sure device drivers are properly initialized.

11 Phosh graphical shell

Phosh is a graphical user interface designed for touch-based devices. It is based on the GTK widget toolkit, and derives from the GNOME Shell as a mobile-specific fork. Phosh is used as a default graphical user interface in the reference images for DEVKIT ADDON CAM-TS-A01.

11.1 Usage

Phosh features a user interface which is similar to what is found on mobile phones today:

11.1.1 Unlocking the screen

After the boot up, the device is locked. When the device is locked, display should show a screen similar to Fig. 11.1.

To unlock the device, please follow the steps below:

- 1. Slide the screen from the bottom to the top, to access the login screen. The login screen looks similar to Fig. 11.2.
- 2. Enter the password and press the 'Unlock' button. For non-numeric password, there is a virtual keyboard available. Virtual keyboard can be opened using the bottom-left button with the keyboard icon.

Default user on Phosh image is user. Default password is 123123.

After unlocking the device, the Main screen (Fig. 11.3) should be visible on the display.

11.1.2 Waking up the device

The user can lock the device again using the Lock Screen button from the top bar menu. The current session will be locked, and the display will be turned off. To turn on the display again, press the WAKE button on HAIKOU CB-MINI-ITX.

11.2 Known issues

- 1. Wrong display resolution when device is locked. Locked screen (Fig. 11.1) and Login screen (Fig. 11.2) are extended by few pixels at the bottom. This causes that button and text placed at the bottom are not displayed correctly. This issue does not occur when the device is unlocked.
- 2. Settings application (gnome-control-center) crashes when trying to open Displays tab. The last opened tab is remembered by the Settings, which causes crashes every time the application is opened. This makes the application unusable. To restore the application to a usable state, open another tab using the terminal:

gnome-control-center power

3. No battery icon is visible in the top right corner.

12 Hardware Guide

This Hardware Guide provides information about the features, connectors and signals available on RINGNECK SOM-PX30-uQ7.

12.1 Q7 Implementation

Q7 has mandatory and optional features. Following table shows the feature set of the RINGNECK SOM-PX30-uQ7 module compared to the minimum ARM/RISC based and maximum configuration according to the Q7 standard.

System I/O Interface	Q7 Minimum	RINGNECK SOM-PX30-uQ7	Q7 Maximum
PCI Express lanes	0	0	4
Serial ATA channels	0	0	2
USB 2.0 ports	1	4	8
USB 3.0 ports	0	0	3
LVDS channels	0	1	2
Embedded DisplayPort	0	0	1
MIPI-CSI	0	1	2
HDMI	0	0	1
High Definition Audio / AC'97 / I2S	0	1	1
Ethernet 10/100/Gigabit	0	1x 100Mbps	1x Gigabit
UART	0	1 (+1 shared with GPIO)	1
GPIO	0	8	8
Secure Digital I/O	0	1	1
System Management Bus	0	0	1
I²C Bus	1	3	4
SPI Bus	0	1	1
CAN Bus	0	1	1
Watchdog Trigger	1	1	1
Power Button	1	1	1
Power Good	1	1	1
Reset Button	1	1	1
LID Button	0	1	1
Sleep Button	0	1	1
Suspend to RAM (S3 mode)	0	1	1
Wake	0	1	1
Battery low alarm	0	1	1
Thermal control	0	1	1
FAN control	0	1	1

Note: RINGNECK SOM-PX30-uQ7 is available in different variants. This document describes the maximum configuration. For details about orderable variants please refer to the order-code document.

Note: Not all interfaces are available at the same time as they might conflict with others. E.g. it is not possible to have LVDS channels and MIPI-DSI at the same time.

12.2 Q7 Connector Pinout

The following table shows the signals on the edge connector of RINGNECK SOM-PX30-uQ7. Empty cells are not connected (NC) pins.

1 GND 2 GND 3 4 5 6 7 GBE_LINK# 8 GBE_LINK1000# 9 GBE_MDI1- 10 GBE_MDI00+ 11 GBE_LINK# 14 GBE_ADI0+ 13 GBE_LINK# 14 GBE_ADI0+ 13 GBE_LINK# 14 GBE_ADI0+ 15 GBE_CTRFF 16 SUS_S3# 17 WAKE# 18 SUS_S3# 19 GPO 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 26 PWGIN 24 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 30 31 31 32 33 34 33 34 GND 44 43 SDIO_CDM 40 SDIO_LED 44 SDIO_CDM 40 SDIO_LED 45 SDIO_CMD 44 SDIO_LED 45 <	Pin	Signal	Pin	Signal
3 4 5 6 7 GBE_LINK# 8 GBE_MDI0- 11 GBE_MDI1+ 10 GBE_MDI0- 13 GBE_LINK# 12 GBE_MDI0- 13 GBE_LINK# 12 GBE_MDI0- 13 GBE_CTRFF 16 SUS_S3# 17 WAKE# 18 SUS_S3# 19 GPO 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 24 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 GND 40 GND 31	1	GND	2	GND
5 68 7 GBE_LINK# 8 GBE_MDI0# 9 GBE_MDI1+ 10 GBE_MDI00+ 11 GBE_LINK# 14 GBE_ACT# 13 GBE_CTRFF 16 SUS_S5# 17 WAKE# 18 SUS_S5# 17 WAKE# 18 SUS_S5# 19 GPO 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 24 GND 24 RSTBTN# 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 31 32 33 31 32 33 34 35 36 36 37 36 MD 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_DAT1 49 SDIO_DAT2 <td>3</td> <td></td> <td>4</td> <td></td>	3		4	
7 GBE_LINK# 8 GBE_LINK1000# 9 GBE_MDI1- 10 GBE_MDI00- 13 GBE_LINK# 14 GBE_ACT# 15 GBE_CTRFF 16 SUS_S5# 17 WAKE# 18 SUS_S3# 19 GPO 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 26 PWGIN 24 GND 26 PWGIN 25 GND 26 PWGIN 26 MD 24 GND 31	5		6	
9 GBE_MDI1- 10 GBE_MDI00- 11 GBE_MDI0+ 12 GBE_MDI0+ 13 GBE_LINK# 14 GBE_ACT# 15 GBE_CTRFF 16 SUS_S3# 19 GP0 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 31 32 33 34 GND 36 37 38 - - 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 48 SDIO_DAT1 45 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 - 53 56 - - 54 I2S_SDI 66 GPD_I2C_CLK	7	GBE LINK#	8	GBE LINK1000#
11 GBE_MDI1+ 12 GBE_MDI00+ 13 GBE_LINK# 14 GBEACT# 15 GBE_CTRFF 16 SUS_S5# 17 WAKE# 18 SUS_S3# 19 GP0 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 28 GND 26 PWGIN 31 32 33 34 GND 32 34 GND 30 31 33 34 GND 30 31 34 BOD_CD# 40 GND 30 35 36 3010_CL# 42 SDIO_CL# 43 SDIO_CD# 40 SDIO_LED 44 43 SDIO_DATO 50 SDIO_DAT1 49 SDIO_DAT0 50 SDIO_DAT3 51 51 SDIO_DAT2 52 54 55 56	9	GBE MDI1-	10	GBE MDIO0-
13 GBE_LINK# 14 GBE_ACT# 15 GBE_CTRFF 16 SUS_S5# 17 WAKE# 18 SUS_S3# 19 GPO 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 GND 26 PWGIN 31 32 33 34 33 34 GND 36 37 38 36 37 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CMD 46 SDIO_WP 43 SDIO_DCMD 50 SDIO_DAT1 49 SDIO_DAT2 52 54 55 56 56 56 57 GND 58 GND 59 12S_CLK 64 62 61 12S_SDIO 64	11	GBE_MDI1+	12	GBE_MDI00+
15 GBE_CTRFF 16 SUS_S5# 17 WAKE# 18 SUS_S3# 19 GPO 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 31 32 31 32 34 GND 35 36 36 37 38 34 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 46 SDIO_WP 47 SDIO_DMD 46 SDIO_DATI 49 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 54 55 56 57 GND 57 GND 58 GND 51 IZS_SDI 64 GPO_12C_CLK 64 52 SDIO_CMA 64	13	GBE_LINK#	14	GBE_ACT#
17 WAKE# 18 SUS_S3# 19 GPO 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 31 32 33 34 GND 36 37 38 36 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 40 GND 44 SDIO_CD# 45 SDIO_CMD 45 SDIO_CMD 48 SDIO_DAT1 47 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 56 53 54 55 56 54 52 SDIO_CLK 60 51 I2S_VNS 60 61 61 12S_SDO 68 GPO_12C_CLK 69 12S_SDO 68 G	15	GBE_CTRFF	16	SUS_S5#
19 GP0 20 PWRBTN# 21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 30 30 31 32 33 GND 33 34 GND GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 40 GND 43 SDIO_CD# 44 SDIO_DWP 44 SDIO_DWP 48 SDIO_DATO 50 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 53 53 54 55 56 57 GND 58 GND 59 I2S_WS 60 60 61 I2S_SDI 66 GP0_12C_CLK 61 I2S_SDI 68 GPD_12C_CLK 67 I2S_SDI <t< td=""><td>17</td><td>WAKE#</td><td>18</td><td>SUS_S3#</td></t<>	17	WAKE#	18	SUS_S3#
21 SLP_BTN# 22 LID_BTN# 23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 31 32 33 34 GND 35 33 34 GND 36 37 38 37 38 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_DAT1 49 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 56 57 GND 58 GND 61 I2S_RST# 62 63 63 I2S_CLK 64 64 64 GP0_12C_DAT 69 70 71 THRMTRIP# 72 WDOUT 73 GND 74 GND	19	GPO	20	PWRBTN#
23 GND 24 GND 25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 31 32 31 32 33 34 GND 35 36 36 37 38 37 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 43 SDIO_CD# 40 GND 44 51 SDIO_CD# 44 SDIO_LED 45 43 SDIO_PWR# 48 SDIO_DAT1 49 49 SDIO_DAT0 50 SDIO_DAT3 51 51 SDIO_DAT2 52 56 56 57 GND 58 GND 50 59 I2S_SDI 64 64 64 61 I2S_SDI 64 64 64 61 I2S_SDI 64 67 64 61 I2S_SDI 64 64 64 61	21	SLP_BTN#	22	LID_BTN#
25 GND 26 PWGIN 27 BATLOW# 28 RSTBTN# 29 30 31 31 32 33 33 34 GND 35 36 37 37 38 38 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 46 SDIO_WP 45 SDIO_CMD 46 SDIO_DAT1 49 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 54 55 GND 58 GND 59 I2S_WS 60 61 61 I2S_RST# 62 63 63 I2S_CLK 64 FOO_I2C_CLK 67 I2S_SDI 66 GPO_12C_DAT 68 GPO_12C_DAT 61 GND 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 74 GND 74<	23	GND	24	GND
27 BATLOW# 28 RSTBTN# 29 30 30 31 32 33 33 34 GND 35 36 36 37 38 38 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_DAT 47 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 54 55 56 57 GND 58 GND 59 I2S_RST# 62 61 I2S_SDI 66 GP0_12C_CLK 67 I2S_SDI 68 GP0_12C_DAT 68 I2S_SDI 68 GP0_12C_DAT 69 70 WDOUT 73 73 GND 74 GND 75 76 76 76 77 78	25	GND	26	PWGIN
29 30 31 32 33 34 GND 35 36 37 38 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CL# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_WP 47 SDIO_DATO 50 SDIO_DAT1 49 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 56 57 GND 57 GND 58 GND 59 I2S_WS 60 61 61 I2S_RST# 62 63 63 I2S_CLK 64 690_12C_CLK 64 GP0_I2C_DAT 69 70 71 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 71 THRMTRIP# 72 WDOUT 73 GND 74 GND	27	BATLOW#	28	RSTBTN#
31 32 33 34 GND 35 36 37 38 39 GND 40 GND 41 BIOS_DISABLE#/BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_WP 47 SDIO_DATO 50 SDIO_DAT1 49 SDIO_DAT2 52 53 51 SDIO_DAT2 52 53 54 55 56 57 GND 58 GND 59 I2S_WS 60 61 61 I2S_ST# 62 63 63 I2S_CLK 64 64 65 I2S_SDI 66 GP0_I2C_CLK 64 55 56 60 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 79 80 81 82 81 USB_OC#	29		30	
33 34 GND 35 36 37 38 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_WP 47 SDIO_DATO 50 SDIO_DAT1 49 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 54 55 56 57 GND 58 GND 59 I2S_WS 60 60 61 I2S_RST# 62 63 63 I2S_CLK 64 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GPO_I2C_DAT 69 70 WDTRIG# 71 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 79 </td <td>31</td> <td></td> <td>32</td> <td></td>	31		32	
35 36 37 38 39 GND 6ND 41 BIOS_DISABLE#/BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_WP 47 SDIO_DATO 50 SDIO_DAT1 49 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 54 55 56 57 GND 58 GND 59 I2S_WS 60 61 61 I2S_RST# 62 63 63 I2S_CLK 64 65 64 51 I2S_SDI 66 67 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDI 68 GP0_I2C_DAT 69 70 WDOUT 73 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 79 </td <td>33</td> <td></td> <td>34</td> <td>GND</td>	33		34	GND
37 38 39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_DATO 47 SDIO_DATO 50 SDIO_DAT1 49 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 56 56 57 GND 58 GND 59 I2S_WS 60 61 I2S_RST# 62 63 63 I2S_CLK 64 64 65 I2S_SDI 66 GP0_I2C_CLK 67 ILS_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 77 78 74 74 79 80 USB_OC# 84	35		36	
39 GND 40 GND 41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_DATO 47 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 56 57 GND 58 GND 59 I2S_WS 60 60 61 I2S_RST# 62 63 63 I2S_CLK 64 64 65 I2S_SDI 66 GPO_I2C_CLK 64 GPO_I2C_DAT 64 65 70 WDTRIG# 70 WDUT 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 74 GND 80 81 75 S 76 76 77 78 78 74 79 SB_OC# 86 USB_OC# 81 SSB_OC# 86 USB_OC#	37		38	
41 BIOS_DISABLE# / BOOT_ALT# 42 SDIO_CLK# 43 SDIO_CD# 44 SDIO_LED 45 SDIO_PWR# 48 SDIO_DAT1 47 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 54 55 56 57 GND 58 GND 59 I2S_WS 60 61 61 I2S_RST# 62 63 63 I2S_CLK 64 670_I2C_CLK 64 GP0_I2C_DAT 64 670_I2C_DAT 67 I2S_SD0 68 GP0_I2C_DAT 68 GP0_I2C_DAT 70 WDUTG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 74 GND 76 76 77 78 74 74 79 80 81 82 81 82 84 85 85 USB_OC# 86 USB_OC# <t< td=""><td>39</td><td>GND</td><td>40</td><td>GND</td></t<>	39	GND	40	GND
43 SDIO_CD# 44 SDIO_LED 45 SDIO_CMD 46 SDIO_WP 47 SDIO_PWR# 48 SDIO_DATI 49 SDIO_DATO 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 54 55 56 57 GND 58 GND 59 I2S_WS 60 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 67 I2S_SDO 68 GP0_12C_CLK 67 I2S_SDO 68 GP0_12C_DAT 69 70 WDTRIG# 71 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 79 80 81 82 81 82 84 85 85 USB_OC# 86 USB_OC# 87 USB_P3+ 90 USB_P2-	41	BIOS_DISABLE# / BOOT_ALT#	42	SDIO_CLK#
45 SDIO_CMD 46 SDIO_WP 47 SDIO_PWR# 48 SDIO_DAT1 49 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 57 GND 58 GND 59 I2S_WS 60 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 79 80 81 82 81 82 84 85 USB_OC# 86 USB_OC# 87 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1+ 94 USB_P0+ 94 USB_P0+ </td <td>43</td> <td>SDIO_CD#</td> <td>44</td> <td>SDIO_LED</td>	43	SDIO_CD#	44	SDIO_LED
47 SDIO_PWR# 48 SDIO_DAT1 49 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 56 57 GND 58 GND 59 I2S_WS 60 60 61 I2S_RST# 62 63 63 I2S_CLK 64 65 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 78 79 80 84 85 USB_OC# 86 USB_OC# 84 85 USB_P3+ 90 USB_P2- 89 USB_P3+ 90 USB_P2+ 74 91 USB_VBUS 92 USB_ID 75 93 USB_P1- 90 USB_P0- 75	45	SDIO_CMD	46	SDIO_WP
49 SDIO_DAT0 50 SDIO_DAT3 51 SDIO_DAT2 52 53 54 55 56 57 GND 58 GND 59 I2S_WS 60 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 GPO_I2C_CLK 67 I2S_SDO 68 GPO_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 79 80 81 82 83 84 85 USB_OC# 86 85 USB_OC# 86 USB_P2- 89 USB_P3+ 90 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 OND	47	SDIO_PWR#	48	SDIO_DAT1
51 SDIO_DAT2 52 53 54 55 56 57 GND 58 GND 59 I2S_WS 60 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 80 81 82 80 83 84 82 84 85 USB_0C# 86 USB_0C# 85 USB_0C# 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 OND	49	SDIO_DATO	50	SDIO_DAT3
53 54 55 56 57 GND 59 I2S_WS 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 78 81 82 83 84 85 USB_OC# 86 85 USB_P3+ 90 USB_P2- 87 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1+ 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 96 USB_P0+ 90 ONB_P0+	51	SDIO_DAT2	52	
55 56 57 GND 58 GND 59 I2S_WS 60 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 80 81 82 84 85 USB_OC# 86 USB_OC# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 93 USB_P1+ 96 USB_P0+ 94 USB_P0+ 96 USB_P0+	53		54	
57 GND 58 GND 59 I2S_WS 60 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 77 78 79 80 84 82 81 82 84 82 85 USB_OC# 86 USB_OC# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 VBB_P1+ 96 USB_P0+	55		56	
59 I2S_WS 60 61 I2S_RST# 62 63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 78 79 80 81 81 82 83 83 84 82 85 USB_0C# 86 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 USB_P1+ 96 USB_P0+	57	GND	58	GND
61 I2S_RS1# 62 63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 76 79 80 81 81 82 83 83 84 82 85 USB_OC# 86 USB_OC# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 USB_P1+ 96 USB_P0+	59	12S_WS	60	
63 I2S_CLK 64 65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 76 79 80 81 81 82 83 83 84 82 84 85 USB_OC# 86 USB_OC# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 93 USB_P1+ 96 USB_P0+ 93 USB_P1+ 96 USB_P0+ 94 USB_P0+ 92 OND	61	12S_RS1#	62	
65 I2S_SDI 66 GP0_I2C_CLK 67 I2S_SDO 68 GP0_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 78 79 80 81 81 82 84 85 USB_0C# 86 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 95 USB_P1+ 96 USB_P0+	63	125_CLK	64	
67 I2S_SDU 68 GPU_I2C_DAT 69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 78 79 80 81 81 82 83 USB_0C# 84 84 85 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 0.010	65	I2S_SDI	66	GPU_12C_CLK
69 70 WDTRIG# 71 THRMTRIP# 72 WDOUT 73 GND 74 GND 75 76 76 77 78 80 81 82 83 83 84 85 USB_0C# 86 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_1D 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 USB_P1+ 96 USB_P0+	67	125_5D0	68	GPU_I2C_DAI
71 THRMTRIP# 72 WD001 73 GND 74 GND 75 76 76 77 78 80 81 82 83 83 84 85 USB_0C# 86 87 USB_P3- 88 89 USB_P3+ 90 91 USB_VBUS 92 93 USB_P1- 94 95 USB_P1+ 96 97 USB_P0- 98 USB_P0- 99 USB_P1+ 90 USB_P0- 91 USB_P1+ 92 USB_P0-	69		70	WDIRIG#
73 GND 74 GND 75 76 77 78 79 80 81 82 83 84 85 USB_0C# 86 87 USB_P3- 88 89 USB_P3+ 90 91 USB_VBUS 92 93 USB_P1- 94 95 USB_P1+ 96 97 USB_P0- 95 USB_P1+ 96 97 0.010	71		12	
73 76 77 78 79 80 81 82 83 84 85 USB_0C# 87 USB_P3- 89 USB_P3+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 0.010	75	GND	74	GND
77 78 79 80 81 82 83 84 85 USB_0C# 86 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 OND 92 OND	/5 77		/0 70	
77 80 81 82 83 84 85 USB_0C# 86 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 OND 92 OND	70		78	
81 82 83 84 85 USB_0C# 86 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 OND 92 OND	/ 7 01		00 00	
85 USB_0C# 86 USB_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+ 97 OND 92 OND	01		07	
65 03B_0C# 66 03B_0C# 87 USB_P3- 88 USB_P2- 89 USB_P3+ 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+	03 05		04	
87 03B_F3* 90 USB_P2+ 91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+	0J 97		88	
91 USB_VBUS 92 USB_ID 93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+	07 90		00	
93 USB_P1- 94 USB_P0- 95 USB_P1+ 96 USB_P0+	91		92	
95 USB_P1+ 96 USB_P0+ 97 OND 00 OND	93	USB P1-	9/	
	95	USB_P1+	96	USB_P0+
	97	GND	98	GND
99 LVDS $\Delta 0+/DSLD0+$ 100 CSLD0+	99	$1 \text{VDS} \Delta \Omega_{+}/\text{DS} D \Omega_{+}$	100	CSL D0+
101 LVDS A0-/DSL D0- 102 CSL D0-	101		102	CSL D0-
103 LVDS A1+/DSI D1+ 104 CSI D1+	103	LVDS A1+/DSI D1+	104	CSI D1+

continues on next page

Pin	Signal	Pin	Signal
105	LVDS_A1-/DSI_D1-	106	CSI_D1-
107	LVDS_A2+/DSI_D2+	108	CSI_D2+
109	LVDS_A2-/DSI_D2-	110	CSI_D2-
111	LVDS_PPEN	112	LVDS_BLEN
113	LVDS A3+/DSI D3+	114	CSI D3+
115	LVDS A3-/DSI D3-	116	CSI D3-
117	GND	118	GND
119	LVDS A CLK+/DSI CLK+	120	CSI CLK+
121	LVDS A CLK-/DSI CLK-	122	CSI CLK-
123	LVDS BLT CTRL/GP PWM OUTO	124	_
125	GP2 I2C DAT / LVDS DID DAT	126	LVDS BLC DAT
127	GP2 I2C CLK / LVDS DID CLK	128	
129	CANO TX	130	CANORX
131		132	
133		134	
135	GND	136	GND
137		138	
139		140	
141	GND	142	GND
143		144	
145		146	
147	GND	148	GND
1/9		150	
151		152	
153		15/	
155		154	
157		158	
159	GND	160	GND
161		160	OND
163		164	
165	GND	164	GND
167		168	CIND
169		170	
171	ΠΛΡΤΟ ΤΧ	170	LIARTO RTS#
173		17/	OARTO_RTS#
175		174	
177	LIARTO RX	178	
179		180	0AI(10_013//
181		182	
183	GND	18/	GND
185	GPION	186	GPI01
187	GPIO2	188	GPI03
189	GPIO/	190	
107		102	CPIO7
102		10/	
105	FAN TACHOIN / CD TIMED IN	104	
17J 107	GND	170	
177		200	
201		200	
201		202	MEG BIOS DISADI E#
203		204	MI O_DIOS_DISADLE#
200		200	
207		200	
207		210	
211		212	
215		214	
213		210 218	
111		110	

Table 12.1 – continued from previous page

continues on next page

		10000 12.1	continued ironn	previous puge	u
Pin	Signal		Pin	Signal	
219	VCC		220	VCC	
221	VCC		222	VCC	
223	VCC		224	VCC	
225	VCC		226	VCC	
227	VCC		228	VCC	
229	VCC		230	VCC	

Table 12.1 – continued from previous page

12.3 Signal Details

12.3.1 Ethernet

Q7 Signal	Туре	Signal Level	Description
GBE_MDI[0:1]+ GBE_MDI[0:1]-	I/O	Analog	Fast Ethernet Controller: Media Dependent Interface Differen- tial Pairs 0,1. The MDI can operate in 100 and 10 Mbit/sec modes
GBE_ACT#	00	3.3V	Ethernet Controller activity indicator, active low
GBE_LINK#	00	3.3V	Ethernet Controller link indicator, active low
GBE_LINK100#	00	3.3V	Internally connected to GBE_LINK#
GBE_CTREF	REF	Analog	Center Tap Voltage

12.3.2 USB

Q7 Signal	Туре	Signal Level	Description
USB_P[0:2]+ USB_P[0:2]-	I/O	USB	High speed universal Serial Bus Port 0, 1, 2 differential pairs
USB_OC#	I	3.3V	Over current detect input. The carrier board can signal an USB overcurrent condition by pulling this pin low.
USB_ID	I	3.3V	Configures the mode of the USB Port 1. If the signal is active high the Port will be configured as USB Client
USB_VBUS		5.0V	USB VBUS pin, 5V tolerant

12.3.3 SDI0

Q7 Signal	Туре	Signal Level	Description
SDIO_CD#	I	3.3V	SDIO Card Detect. This signal indicates when a SDIO/MMC card is present
SDIO_CLK	0	3.3V	SDIO Clock
SDIO_CMD	I/0	3.3V	SDIO Command/Response
SDIO_LED	0	3.3V	SDIO LED. Used to drive an external LED to indicate transfers on the bus
SDIO_WP		3.3V	SDIO Write Protect
SDIO_PWR#	0	3.3V	SDIO Power Enable. This signal is used to enable the power being supplied to a SD/MMC card device
SDIO_DAT0-4	I/0	3.3V	SDIO Data lines

12.3.4 I2C

Q7 Signal	Туре	Signal Level	Description
Q7_I2C_CLK	0	3.3V	I2C bus clock line connected to PX30
Q7_I2C_DAT	I/0	3.3V	I2C bus data line connected to PX30
LVDS_DID_CLK /GP2_I2C_CLK	0	3.3V	I2C bus clock line connected to PX30, Secure Element, STM32, Attiny and Video connector
LVDS_DID_DAT /GP2_I2C_DAT	I/O	3.3V	I2C bus data line connected to PX30, Secure Element, STM32, Attiny and Video connector
LVDS_BLC_DAT	0	3.3V	I2C bus clock line connected to PX30, Video connector and car- rier board EEPROM
LVDS_BLC_CLK	I/O	3.3V	I2C bus data line connected to PX30, Video connector and carrier board EEPROM

12.3.5 I2S

Q7 Signal	Туре	Signal Level	Description
I2S_RST#	0	3.3V	I2S Codec Reset
I2S_WS	0	3.3V	I2S Word Select
I2S_CLK	0	3.3V	I2S Serial Data Clock
I2S_SD0	0	3.3V	I2S Serial Data Output
I2S_SDI	I	3.3V	I2S Serial Data Input

12.3.6 Video

The Q7 LVDS_A pins support LVDS and MIDI-DSI. LVDS and MIPI-DSI signals are electrically compatible in the sense that nothing will be damaged, but are not defined in the Qseven standard.

The MIPI-DSI specifications are:

- MIPI DSI D-PHY v1.0
- Up to four data lates
- Up to 1.0 Gbps per lane

The signal mapping is shown below:

Q7 Signal	Function 1	Function 2
LVDS_A0_P	LVDS_A0+	DSI_D0+
LVDS_A0_N	LVDS_A0-	DSI_D0-
LVDS_A1_P	LVDS_A0+	DSI_D1+
LVDS_A1_N	LVDS_A1-	DSI_D1-
LVDS_A2_P	LVDS_A2+	DSI_D2+
LVDS_A2_N	LVDS_A2-	DSI_D2-
LVDS_A3_P	LVDS_A3+	DSI_D3+
LVDS_A3_N	LVDS_A3-	DSI_D3-
LVDS_A_CLK_P	LVDS_A_CLK+	DSI_CLK+
LVDS_A_CLK_N	LVDS_A_CLK-	DSI_CLK-

The Q7 LVDS_B pins are used as MIPI-CSI. The specifications are:

- MIPI CSI D-PHY v1.0
- Up to four data lanes

• Up to 1.0 Gbps per lane

The signal mapping is shown below:

Q7 Signal	Function
LVDS_B0_P	CSI_D0+
LVDS_B0_N	CSI_D0-
LVDS_B1_P	CSI_D1+
LVDS_B1_N	CSI_D1-
LVDS_B2_P	CSI_D2+
LVDS_B2_N	CSI_D2-
LVDS_B3_P	CSI_D3+
LVDS_B3_N	CSI_D3-
LVDS_B_CLK_P	CSI_CLK+
LVDS_B_CLK_N	CSI_CLK-

12.3.7 GPIO

Q7 Signal	Туре	Signal Level	Description
GPI0[0-7]	I/O	3.3V	General purpose inputs/outputs 0 to 7

12.3.8 CAN

Q7 Signal	Туре	Signal Level	Description
CAN0_TX	0	3.3V	CAN (Controller Area Network) TX output for CAN Bus channel 0
CAN0_RX	I	3.3V	CAN (Controller Area Network) RX input for CAN Bus channel 0

12.3.9 SPI

Q7 Signal	Туре	Signal Level	Description
SPI_MOSI	0	3.3V	Master serial output/Slave serial input signal
SPI_MIS0	I	3.3V	Master serial input/Slave serial output signal
SPI_SCK	0	3.3V	SPI clock output
SPI_CS0#	0	3.3V	SPI chip select 0 output
SPI_CS1#	0	3.3V	SPI chip select 1 output (used when two devices are connected)

12.3.10 UART

UARTO, as specified in the Q7 standard, is implemented including hardware flow control. This UART shows up in Linux as /dev/ttyS0.

Q7 Signal	Туре	Signal Level	Description
UART0_TX	0	3.3V	Serial data transmit
UARTO_RX	I	3.3V	Serial data receive
UART0_CTS#	1	3.3V	Handshake signal: ready to send data
UART0_RTS#	0	3.3V	Handshake signal: ready to receive data

A second UART, UART1, can be enabled on the GPIO pins. This UART shows up in Linux as /dev/ttyS5.

Q7 Signal	Alternate function	Туре	Signal Level	Description
GPI05	UART1_TX	0	3.3V	Serial data transmit
GPI06	UART1_RX	I	3.3V	Serial data receive

12.3.11 Misc

Signal	Туре	Signal Level	Description
WDTRIG#	I	3.3V	Watchdog trigger signal
WDOUT	0	3.3V	Watchdog event indicator
SPKR GP_PWM_0UT2	0	3.3V	PC speaker (buzzer) output. Alternate function general purpose PWM output
BIOS_DISABLE# /BOOT_ALT#	I	3.3V	Disables the onboard bootloader and uses the one the SD card instead. If no bootloader is available on the SD card it falls back to USB recovery mode
THRMTRIP#	0	3.3V	Thermal Trip indicates an overheating condition of the proces- sor. If 'THRMTRIP#' goes active the system immediately tran- sitions to the S5 State (Soft Off)
FAN_PWMOUT /GP_PWM_OUT1	0	3.3V	PWM output for fan speed control. Alternate function gen- eral purpose PWM output. Function based on microcontroller firmware
FAN_TACHOIN /GP_TIMER_IN	I	3.3V	Fan tachometer input. Alternate function general purpose timer input. Function based on microcontroller firmware

12.3.12 Power Management

Signal	Туре	Signal Level	Description
RSTBTN#	1	3.3V	Reset button input. An active low signal resets the module
BATLOW#	I	3.3V	Battery low input
WAKE#	I	3.3V	External system wake event. An active low signal wakes the module from a sleep state
SUS_S3#	0	3.3V	Indicated that the system is in suspend to ram (S3)
SUS_S5#	0	3.3V	Indicated that the system is in soft-off state (S5)
SLP_BTN#	I	3.3V	Sleep button. Signals the system with an falling edge to transi- tion into sleep or wake from a sleep state
LID_BTN#	Ι	3.3V	LID button. Low active signal to detect a LID switch to transition into sleep or wake from a sleep state

12.3.13 Power

Signal	Nominal Input	Description
VCC	5V	Main supply for the module
VCC_RTC	3V	Backup supply for the RTC. If not used it can be left unconnected. Typical current: 1.4uA

12.4 On-board Devices

12.4.1 Power-Manager

The Rockchip RK809-1 is connected to the CPU via I2C:

RK809-1 Pin	Function	CPU Pin
1	SCL	I2C0_SCL_u (ball R21)
2	SDA	12C0_SDA_u (ball M21)

12.4.2 DDR4

• Up to 4GB RAM of DDR4-1600

12.4.3 eMMC

• eMMC connected through the 8-bit wide SDIO interface EMMC_D on the CPU.

Signal	CPU Pin	Linux GPIO #	
RESET	GPI01_B3	43	

12.4.4 Companion Controller 1

Controller features are implemented by emulating standard ICs. Feature configuration is provided in a table below.

Feature	CPU Connection	Emulated IC	Qseven Pins
RTC	12C	ISL1208	none
Temperature sensor and fan controller	12C	AMC6821	FAN_TACHOIN, FAN_PWMOUT
CAN	USB	UCAN	CAN0_TX, CAN0_RX

See also Section 10.1 Companion Controller 1 (STM32).

12.4.5 Companion Controller 2

Controller features are implemented by emulating standard ICs. Feature configuration is provided in a table below.

Feature	CPU Connection	Emulated IC	Qseven Pins
RTC	I2C	ISL1208	none
Temperature sensor and fan controller	I2C	AMC6821	FAN_TACHOIN, FAN_PWMOUT

See also Section 10.2 Companion Controller 2 (ATtiny).

12.4.6 Ethernet PHY

The Texas Instruments DP83825IRMQR is connected to the CPU via RGMII and MDIO. Further connections are shown below.

PHY signal	Connected to	Linux GPIO #
RESET	CPU pin GPI03_B0	104
MDIO	CPU pin GPI02_A7	71
MDC	CPU pin GPI02_B1	73
LED1	Qseven GBE_LINK1000 and GBE_LINK100 and GBE_LINK (tied together)	
LED2	Qseven GBE_ACT	

12.5 Wifi and Bluetooth module

Fig. 12.1: WiFi and Bluetooth module

The WiFi and Bluetooth are part of the ESP32 PICO MINI 02U module on RINGNECK SOM-PX30-uQ7. The antenna connector on the module is w.FL type. The firmware running on the ESP32 is flashed in its internal memory and unlike most wireless modules, does not require files to be present in the root filesystem. This also means that a firmware upgrade is slightly more complex since it needs to be flashed (see Section 8.3 Flashing the wifi firmware).

The following pins are used for boot and reset.

ESP32 signal	CPU Pin	Linux GPIO #
WiFi_RST	GPI02_B0	72
WiFi_BOOT	GPIO0_A1	1

12.5.1 Test points RINGNECK SOM-PX30-uQ7

Test point	Connected to
TP1	5V
TP2	VCC_3V3
TP3	VDD_LOG
TP4	VDD_ARM
TP5	VCC_DDR
TP6	VCC_3V0_1V8
TP7	VCC_1V8
TP8	VCC_1V0
TP9	VCCI0_SD
TP10	VCC_LCD
TP11	1V8_LCD
TP12	VCCA_1V8
TP13	VCC_eMMC
TP14	PMIC_INT
TP15	PMIC_SLEEP
TP16	VDC
TP17	PMIC_PWRON
TP18	I2C0_SCL
TP19	I2C0_SDA
TP20	PMIC_Xin
TP21	PMIC_Xout
TP22	PX30_Xin
TP23	PX30_Xout
TP24	MCU_UARI_IX
TP25	MCU_UARI_RX
TP26	Q7_LVDS_DID_CLK
TP27	Q7_LVDS_DID_DAI
TP28	Q7_LVDS_BLC_DAT
TP29	Q7_LVDS_BLC_CLK
TP30	134 WIFI
TP31	135 WIFI
TP32	ESP32_IXDU
TP33	ESP32_RXDU
	BI_UARI_IX
TP35	BI_UAKI_KX
1P36	BI_KESEI
	BI_UARI_RIS_N
1238	BI_UAKI_UIS_N
1237	BI_wake_host

12.6 USB

The SoC on RINGNECK SOM-PX30-uQ7 has 2 USB 2.0 controllers. A USB 2.0 hub provides two additional USB 2.0 ports for a total of four.

The routing of Qseven signals to CPU and/or hub port is shown below.

Qseven Port #	Speed	Connected to	Notes
USB_P0	USB 2.0 Hi-Speed	Hub	
USB_P1	USB 2.0 Hi-Speed	CPU	OTG Port
USB_P2	USB 2.0 Hi-Speed	Hub	
USB_P3	USB 2.0 Hi-Speed	Hub	

The lsusb -t command shows the USB topology in a tree view and is highly recommended. Its output is discussed below, for RINGNECK SOM-PX30-uQ7 without additional devices connected:

```
$ lsusb -t
- Bus 03.Port 1: Dev 1, Class=root_hub, Driver=ohci-platform/1p, 12M
- Bus 02.Port 1: Dev 1, Class=root_hub, Driver=ehci-platform/1p, 480M
* Port 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 480M
Port 1: Dev 3, If 0, Class=Mass Storage, Driver=usb-storage, 480M
Port 3: Dev 4, If 0, Class=Mass Storage, Driver=usb-storage, 480M
Port 4: Dev 6, If 0, Class=Vendor Specific Class, Driver=ucan, 12M
- Bus 01.Port 1: Dev 1, Class=root hub, Driver=dwc2 1p, 480M
```

The CAN controller is connected to Port 4 on the hub.

The USB hub can be held in reset, if required. This disables all USB ports connected to the hub. The reset signal routing is shown below:

Hub signal	CPU Pin	Linux GPIO #
USBHUB_RESETn	GPIO0_A5	5

12.7 Using Qseven Signals as GPIO

Most Qseven signals can be reused as a general purpose I/O pin. The following table shows the mapping and the possible direction as seen from the baseboard.

Qseven Pin	Signal	CPU Pin	Linux GPIO #	Direction
16	SUS_S5#	GPI03_A0	96	Bidirectional
17	WAKE#	GPI01_B6	46	Input
18	SUS_S3#	GPI03_A3	99	Bidirectional
19	GP00	GPI02_B3	75	Bidirectional
21	SLP_BTN#	GPI01_B7	47	Input
22	LID_BTN#	GPI03_A6	102	Bidirectional
27	BATLOW#	GPI03_A7	103	Bidirectional
42	SDIO_CLK#	GPI01_D6	62	Bidirectional
43	SDIO_CD#	GPI00_A3	3	Bidirectional
44	SDI0_LED	GPI03_B3	107	Birectional
45	SDIO_CMD	GPI01_D7	63	Bidirectional
46	SDI0_WP	GPI03_B5	109	Bidirectional
47	SDIO_PWR#	GPI03_D3	123	Bidirectional
48	SDIO_DAT1	GPI01_D3	59	Bidirectional
49	SDIO_DATO	GPI01_D2	58	Bidirectional
50	SDIO_DAT3	GPI01_D5	61	Bidirectional
51	SDIO_DAT2	GPI01_D4	60	Bidirectional
59	I2S_WS	GPI03_C2	114	Bidrectional
63	I2S_CLK	GPI03_C3	115	Bidirectional
65	I2S_SDI	GPI03_C5	117	Bidirectional
66	GP0_I2C_CLK	GPI02_B7	79	Bidirectional
67	I2S_SD0	GPI03_C4	116	Bidirectional
68	GP0_I2C_DAT	GPI02_C0	80	Bidirectional
71	THRMTRIP#	GPI03_D2	122	Bidirectional
111	LVDS_PPEN	GPIO0_A2	2	Bidirectional
112	LVDS_BLEN	GPIO0_A0	0	Bidirectional
123	LVDS_BLT_CTRL / GP_PWM_OUT0	GPI00_B7	15	Bidirectional
125	GP2_I2C_DAT / LVDS_DID_DAT	GPI00_C3	19	Bidirectional
127	GP2_I2C_CLK / LVDS_DID_CLK	GPI00_C2	18	Bidirectional
171	UART0_TX	GPI00_B2	10	Bidirectional
172	UART0_RTS#	GPI00_B5	13	Bidirectional
177	UART0_RX	GPI00_B3	11	Bidirectional
178	UART0_CTS#	GPI00_B4	12	Bidirectional
185	GPI00	GPI03_C6	118	Bidirectional
186	GPI01	GPI03_D0	120	Bidirectional
187	GPI02	GPI03_C7	119	Bidirectional
188	GPI03	GPI03_D1	121	Bidirectional
189	GPI04	GPI03_C0	112	Bidirectional
190	GPI05	GPI03_A2	98	Bidirectional
191	GPI06	GPI03_A1	97	Bidirectional
192	GPI07	GPI02_B6	78	Bidirectional
199	SPI_MOSI	GPI03_B4	108	Bidirectional
200	SPI_CS0#	GPI03_B1	105	Bidirectional
201	SPI_MISO	GPI03_B6	110	Bidirectional
202	SPI_CS1#	GPI03_B2	106	Bidirectional
203	SPI_SCK	GPI03_B7	111	Bidirectional

12.8 Electrical Specification

12.8.1 Power Supply

The power supply requirements are listed in the table below and are identical to the Qseven specification.

Rail	Description	Nominal voltage	Tolerance
VCC	Main power supply	5V	4.75 5.25V
VCC_RTC	Backup battery	3V	2.4 3.3V

12.9 Mechanical Specification

12.9.1 Module Dimensions

The mechanical dimensions of the module are shown below.

Fig. 12.2: Module dimensions (all values in mm)

12.9.2 HAIKOU CB-MINI-ITX Dimensions

The mechanical dimensions of HAIKOU CB-MINI-ITX match the Mini-ITX form factor and can be mounted in a standard Mini-ITX PC Case.

13 Known limitations

1. The Rockchip PX30 watchdog should not be used if booting from SD card otherwise RINGNECK SOM-PX30-uQ7 will not boot unless power-cycled manually.

14 Contact

Cherry Embedded Solutions GmbH Seestadtstraße 27 1220 Vienna Austria

Inquiries: sales-es@cherry.de Technical Support: support-es@cherry.de

15 Revision History

Date	Revision	Major changes
Nov 1, 2022	v0.0.1	First internal release
Dec 21, 2022	v1.0.0	Internal review ; public release
Dec 21, 2022	v1.0.1	Fix one missing image in html output
Mar 29, 2023	v1.1.0	Add Phosh graphical shell
Apr 27, 2023	v1.2.0	Add meta-extended demo image build instructions Fix incorrect Haikou header(s) for LVDS_DID* and GP0_I2C_* sig- nals CAN only supported with STM32
Aug 23, 2023	v1.3.0	Fix Yocto directory tree layout
		Add companion controller 1 and 2 (STM & ATtiny) flashing instruc- tions
		Fix companion controller 1 (STM) flashmode entering instructions Move companion controller 1 and 2 flashing instructions to sepa- rate section
Dec 18, 2023	v1.3.1	recalled version
Feb 15, 2024	v1.3.2	Rename files for consistency between products Replace dd flashing instructions with bmaptool Update pip instructions for Bookworm Add yocto directory creation Update kas container instructions Rephrase layer version requirement Bump yocto layer and kas versions
Mar 08, 2024	v1.4.0	Add known SoC watchdog limitation note Update build instruction to match git repositories changes Add note on how to build debos on non Debian systems
Арг 03, 2024	v1.5.0	Add instructions on how to use kernel modules in debos Made shell code snippets pass shellcheck Theobroma Systems is now CHERRY Embedded Solutions