
JAGUAR SBC-RK3588-AMR
Single Board Computer for Autonomous Mobile Robots
featuring the Rockchip RK3588 cutting-edge processor

USER MANUAL

Document revision: v1.1.0
Issue date: Apr 12, 2024

Contents

1 Introduction 1
1.1 Device Overview . 1
1.2 Precautions . 2

2 Interfaces 3
2.1 Power Supply . 3
2.2 USB Serial Console . 4
2.3 Buttons . 6
2.4 FAN . 7
2.5 CAN . 7
2.6 RS-485 . 8
2.7 Battery . 9
2.8 Mezzanine Connector . 9

3 Mechanical Specification 13

4 Software Overview 14
4.1 Supported Distributions . 14
4.2 Compiling Linux Applications . 14
4.3 Known issues . 14

5 Debian image guide 15
5.1 Prepare the host PC . 15
5.2 Get the ATF . 15
5.3 Compile U-Boot . 16
5.4 Compile the Linux kernel . 16
5.5 Building the debos image . 17

6 Building a Yocto image 19
6.1 Prerequisites . 19
6.2 BSP meta layer . 19
6.3 Extended meta layer . 22

7 Deploy a disk image 26
7.1 Deploy on SD Card . 26
7.2 Deploy on internal eMMC . 26

8 Companion controller features 28
8.1 How to flash Mule-ATtiny . 28

9 Serial Number 29

10 Contact 30

11 Revision History 31

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page i

1 Introduction
Congratulations for acquiring CHERRY Embedded Solutions new product, combining best-in-class perfor-
mance with a rich set of peripherals.

Note: The latest version of this manual and related resources can always be found on our website at the
following address:

https://embedded.cherry.de/product/jaguar-sbc-rk3588/

1.1 Device Overview

Cutting-edge performance for autonomous mobile robots (AMR)

Due to its top performance CPU in parallel with GPU and NPU, algorithms can be based on rules, statisti-
cal methods, and neural learning. The Rockchip RK3588 is a low-power octa-core processor for Internet of
Things (IoT) devices with artificial intelligence (AI). It features four ARM Cortex-A76 and four ARM Cortex-A55
cores, a Mali G610 GPU, and an NPU with up to 6 TOPs. The 64-bit-capable ARMv8 cores support both
ARM Cryptographic Extension (for wire-rate AES cryptography) and AdvSIMD vector processing. The JAGUAR
SBC-RK3588-AMRuses up to 16 GB LPDDR4Xmemory and up to 256 GB eMMC storage on board, and optionally
external storage media such as NVMe/SSD, and SD card.

Native support of four high-resolution cameras

The JAGUARSBC-RK3588-AMRmodule providesMIPI-CSI interfaces for four high-resolution cameras. Using a
MIPI-CSI interface not only reduces the costs of camera modules, but also provides a continuous stream of raw
video data into the processor – regardless of USB or Ethernet protocol. The four cameras can be grouped into
two pairs that are synchronized (vsync), enabling their data to be easily combined into an accurate 3-dimensional
point cloud. In addition to the video input signal, the two camera ports can also receive the signals of Inertial
Measurement Units (IMU) integrated in the cameras, allowing to track accelerations and turns.

Simple integration into the design of your robot

The JAGUAR SBC-RK3588-AMR comes with common ports for the various interfaces, which provides both sim-
ple interfacing to the robotic device and low connector costs for the overall product. Additional interfaces can
be utilized by an optional extension board that plugs into a specific connector called a “mezzanine” connector
because it adds a second floor. The JAGUAR SBC-RK3588-AMR operates from a single power input with a volt-
age range of 12 to 24 V. While its consumption under load is a moderate 18 W, it provides up to 35 W for devices
attached via PCIe and USB. It also routes the voltage input to an optional extension board on a mezzanine con-
nector. Last but not least, the Rockchip RK3588 is located on the bottom of the PCBA as the highest element
on this side, which means that, heat can be easily dissipated by simply interfacing the Rockchip RK3588 to the
chassis with a thermal conductor.

State-of-the-art security for your assets

The JAGUAR SBC-RK3588-AMR features a secure element in addition to the capability to enable a Secure Boot
mechanism. This secure element is based on the GlobalPlatform 2.2.1 compliant JavaCard environment. Se-
cure boot guarantees that only signed images can run on the device. Enjoy the peace of mind that comes with a
government-grade security solution for all identification, key-storage and asset-protection requirements. The
Common Criteria (EAL6+) certified security module ensures that you never have to sacrifice security for per-
formance again.

Note: In favor of readability in this document JAGUAR SBC-RK3588-AMR will be referenced by its code name
Jaguar

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 1

https://embedded.cherry.de/product/jaguar-sbc-rk3588/

1.2 Precautions

Warning: ESD Sensitive Device

Electronic boards and their components are sensitive to static electricity. Therefore, care must be taken
during all handling operations and inspections of this product, in order to ensure product integrity at all
times.

Do not handle this product out of its protective enclosure while it is not used for operational purposes unless
it is otherwise protected. Whenever possible, unpack or pack this product only at EOS/ESD safe work sta-
tions. Where a safe work station is not guaranteed, it is important for the user to be electrically discharged
before touching the product with hands or tools.

v1.1.0
Page 2

2 Interfaces
Jaguar provides a wide variety of interfaces.

G
ig

a
b

it

E
th

e
rn

e
t

P
9

P
P

S

P
8

M
.2

 K
e

y-
M

 P
3

M
IP

I-C
S

I P
1

4

M.2 Key-E P2

HDMI

P7

USB 2.0
P10

USB 3.1
P12

M
e

zza
n

in
e

 C
o

n
n

e
cto

r P
1M

IP
I-C

S
I P

1
5

USB 3.1

P11
FAN P13 P20

USB Serial

Console

B
o

o
t S

W
2

R
e

se
t S

W
1

R
S

-4
8

5

P
1

9

P
o

w
e

r

P
4

S
u

p
p

ly
1

2
-2

4
V

C
A

N

P
5

Fig. 2.1: Jaguar interfaces overview

2.1 Power Supply

In order to power the board, connect the appropriate cable to the highlighted connector shown in the figure
below. The Jaguar power supply voltage is 12-24V.

Note: Be careful when connecting the power cable since all three terminal block connectors are of the same
type.

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 3

Power Supply

12-24V

P4

3.GND
2.VCC

1.GND

Fig. 2.2: Power connector

Table 2.1: Compatible mating connectors

Manufacturer Partnumber Description
Würth 691361100003 Vertical
Würth 691363110003 Horizontal with hook on wire Side
Würth 691366110003 Horizontal with hook on back Side
Würth 691304100003 Screwless Plug Vertical Entry Low Profile

2.2 USB Serial Console

Jaguar contains an on-board Silicon Labs CP2102N USB-serial converter. Connect a Micro-USB cable to the
Micro-USB as highlighted below:

v1.1.0
Page 4

https://www.we-online.com/en/components/products/TBL_3_50_3611_VERTICAL_69136110000X#691361100003
https://www.we-online.com/en/components/products/TBL_3_50_3631_HORIZONTAL_W_HOOK_ON_WIRE_SIDE_69136311000X#691363110003
https://www.we-online.com/en/components/products/TBL_3_50_3661_HORIZONTAL_W_HOOK_ON_BACK_SIDE_69136611000X#691366110003
https://www.we-online.com/en/components/products/TBL_3_5_3041_6913041000XX#691304100003

USB Serial

Console

P20

Fig. 2.3: USB UART

For macOS and Windows, drivers are available from Silicon Labs: https://www.silabs.com/products/
development-tools/software/usb-to-uart-bridge-vcp-drivers

A terminal emulation program is required to access the serial console.

Table 2.2: Terminal emulators recommendations

Operation
System

Terminal
Emulator

URL Example Commandline

Microsoft
Windows

PuTTY https://www.chiark.greenend.org.uk/
~sgtatham/putty/

MobaXterm https://mobaxterm.mobatek.net/
Tera Term https://ttssh2.osdn.jp/

macOS cu cu -s 115200 -l /dev/cu.

SLAB_USBtoUART

Linux picocom https://github.com/npat-efault/
picocom/

picocom -b 115200 /dev/

ttyUSB0

minicom https://salsa.debian.org/
minicom-team/minicom/

minicom -b 115200 -D /dev/

ttyUSB0

GNU Screen https://www.gnu.org/software/
screen/

screen /dev/ttyUSB0 115200

Note: Make sure to disable software flow-control (XON/XOFF). Otherwise, serial input may not be recognized.

After system boot-up with the Jaguar Debian development image, the login console appears on the terminal:

jaguar login:

You can log with one of the following credentials:

Table 2.3: Default User

Username Password
root root
user 123123

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 5

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://mobaxterm.mobatek.net/
https://ttssh2.osdn.jp/
https://github.com/npat-efault/picocom/
https://github.com/npat-efault/picocom/
https://salsa.debian.org/minicom-team/minicom/
https://salsa.debian.org/minicom-team/minicom/
https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/

2.3 Buttons

Reset

SW1

Boot

SW2

USB 3.1

P11

Fig. 2.4: Buttons and Download USB Type-C port

The control buttons provide the following functionality:

• Reset triggers a board reset.

• BOOT SW forces alternate boot sequence.

2.3.1 Boot Order

The used boot order of the Jaguar board depends on the state of the BOOT SW switch.

Default BOOT SW pressed
1 eMMC storage SD card
2 SD card USB loader
3 USB loader

If no bootloader is found on any storage device, Jaguar will go into USB loader mode, showing up as a USB
device with VID:PID 2207:350b on the USB port P11 marked Download.

Once booted into Linux, presses on the BOOT SW button will trigger a KEY_VENDOR input event on the /dev/

input/by-path/platform-adc-keys-event input device:

$ evtest /dev/input/by-path/platform-adc-keys-event

Input driver version is 1.0.1

Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100

Input device name: "adc-keys"

Supported events:

Event type 0 (EV_SYN)

Event type 1 (EV_KEY)

Event code 360 (KEY_VENDOR)

Properties:

Testing ^^... (interrupt to exit)

Event: time 1695722632.280609, type 1 (EV_KEY), code 360 (KEY_VENDOR), value 1

Event: time 1695722632.280609, -------------- SYN_REPORT ------------

(continues on next page)

v1.1.0
Page 6

(continued from previous page)
Event: time 1695722632.383952, type 1 (EV_KEY), code 360 (KEY_VENDOR), value 0

Event: time 1695722632.383952, -------------- SYN_REPORT ------------

2.4 FAN

A PWM controlled fan with tacho signal can be connected. The supply voltage can be selected by changing a
0-Ohm resistor, the default supply is 12 V.

Table 2.4: Fan supply (bold default)

Resistor Fan supply
R314 Main supply voltage
R315 12 V
R316 5 V

Table 2.5: Fan mating connector

Manufacturer Partnumber
JST PHR-4

FAN

P13

4
.G
N
D

3
.V
C
C

2
.TA

C
H
O

1
.P
W
M

Fig. 2.5: FAN connection

2.5 CAN

Jaguar supports up to three CAN busses. CAN0 has an on-board transceiver and supports up to 1 MBaud data
rate. CAN1 and CAN2 are available on the Mezzanine connector and require a transceiver on the Mezzanine
board.

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 7

CAN

P5

3.GND
2.CAN_N

1.CAN_P

Fig. 2.6: CAN connector

Table 2.6: Compatible mating connectors

Manufacturer Partnumber Description
Würth 691361100003 Vertical
Würth 691363110003 Horizontal with hook on wire Side
Würth 691366110003 Horizontal with hook on back Side
Würth 691304100003 Screwless Plug Vertical Entry Low Profile

2.6 RS-485

Jaguar supports half-duplex RS-485.

RS-485

P19

3.GND
2.RS-486_N

1.RS-486_P

Fig. 2.7: RS-485 connector

v1.1.0
Page 8

https://www.we-online.com/en/components/products/TBL_3_50_3611_VERTICAL_69136110000X#691361100003
https://www.we-online.com/en/components/products/TBL_3_50_3631_HORIZONTAL_W_HOOK_ON_WIRE_SIDE_69136311000X#691363110003
https://www.we-online.com/en/components/products/TBL_3_50_3661_HORIZONTAL_W_HOOK_ON_BACK_SIDE_69136611000X#691366110003
https://www.we-online.com/en/components/products/TBL_3_5_3041_6913041000XX#691304100003

Table 2.7: Compatible mating connectors

Manufacturer Partnumber Description
Würth 691361100003 Vertical
Würth 691363110003 Horizontal with hook on wire Side
Würth 691366110003 Horizontal with hook on back Side
Würth 691304100003 Screwless Plug Vertical Entry Low Profile

2.7 Battery

A CR2032 coin cell can be used to supply the on-board real-time-clock. The coin cell is only used when Jaguar
is not supplied power from an external source.

2.8 Mezzanine Connector

Jaguar has an 80-pin connector for extensions board. Most pins have multiple functions that can be selected
via software configuration. See Table 2.10 Mezzanine multiplex functions.

Table 2.8: Compatible mating connectors

Manufacturer Partnumber Description
Hirose ER8-80P-0.8SV-2H 2mm height plug
Hirose ER8-80P-0.8SV-5H 5mm height plug

Table 2.9: Mezzanine connector pinout

Pin Function Pin Function
1 CP2102_POWER_EN 41 GND
2 CAM0_STROBE 42 GPIO3_C0
3 ADC_IN2 43 CAM2_CLK0_P
4 CAM1_STROBE 44 GPIO3_C1
5 WDTRIG# 45 CAM2_CLK0_N
6 I2C1_SCL 46 GPIO3_C2
7 GND 47 GND
8 I2C1_SDA 48 GPIO3_C3
9 CAM3_D1_P 49 CAM2_MCLK
10 GND 50 GPIO3_C4
11 CAM3_D1_N 51 CAM2_RST
12 X 52 GPIO3_C5
13 GND 53 PCIE20_0_RX_P
14 GPIO3_A0 54 GPIO3_C6
15 CAM3_D0_P 55 PCIE20_0_RX_N
16 GPIO3_A1 56 GPIO3_C7
17 CAM3_D0_N 57 GND
18 GPIO3_A2 58 GPIO3_D0
19 GND 59 PCIE20_0_TX_P
20 GPIO3_A3 60 GPIO3_D1
21 CAM3_CLK0_P 61 PCIE20_0_TX_N
22 GPIO3_A4 62 GPIO3_D2
23 CAM3_CLK0_N 63 GND
24 GPIO3_A5 64 GPIO3_D3
25 GND 65 PCIE20_0_CLK_P
26 GPIO3_A6 66 GPIO3_D4
27 CAM3_MLCK 67 PCIE20_0_CLK_N

continues on next page

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 9

https://www.we-online.com/en/components/products/TBL_3_50_3611_VERTICAL_69136110000X#691361100003
https://www.we-online.com/en/components/products/TBL_3_50_3631_HORIZONTAL_W_HOOK_ON_WIRE_SIDE_69136311000X#691363110003
https://www.we-online.com/en/components/products/TBL_3_50_3661_HORIZONTAL_W_HOOK_ON_BACK_SIDE_69136611000X#691366110003
https://www.we-online.com/en/components/products/TBL_3_5_3041_6913041000XX#691304100003
https://www.hirose.com/en/product/p/CL0625-0022-0-00
https://www.hirose.com/en/product/p/CL0625-0029-0-00

Table 2.9 – continued from previous page
Pin Function Pin Function
28 GPIO3_B1 68 GPIO3_D5
29 CAM3_RST 69 GND
30 GPIO3_B2 70 GND
31 CAM2_D1_P 71 VCC_1V8
32 GPIO3_B3 72 VCC_3V3
33 CAM2_D1_N 73 VCC_1V8
34 GPIO3_B4 74 VCC_3V3
35 GND 75 GND
36 GPIO3_B5 76 GND
37 CAM2_D0_P 77 VCC_IN
38 GPIO3_B6 78 VCC_5V0
39 CAM2_D0_N 79 VCC_IN
40 GPIO3_B7 80 VCC_5V0

Table 2.10: Mezzanine multiplex functions

Pin Number GPIO Name PWM SDIO I2S I2C
14 GPIO3_A0 PWM10_M0 SDIO_D0_M1 I2S3_MCLK I2C6_SDA_M4
16 GPIO3_A1 PWM11_IR_M0 SDIO_D1_M1 I2S3_SCLK I2C6_SCL_M4
18 GPIO3_A2 SDIO_D2_M1 I2S3_LRCK
20 GPIO3_A3 SDIO_D3_M1 I2S3_SDO
22 GPIO3_A4 SDIO_CMD_M1 I2S3_SDI
24 GPIO3_A5 SDIO_CLK_M1 I2C4_SDA_M0
26 GPIO3_A6 I2C4_SCL_M0
49 GPIO3_A7 PWM8_M0
27 GPIO3_B0 PWM9_M0
28 GPIO3_B1 PWM2_M1
30 GPIO3_B2 PWM3_IR_M1 I2S2_SDI_M1
32 GPIO3_B3 I2S2_SDO_M1
34 GPIO3_B4 I2S2_MCLK_M1
36 GPIO3_B5 PWM12_M0 I2S2_SCLK_M1
38 GPIO3_B6 PWM13_M0 I2S2_LRCK_M1
40 GPIO3_B7
42 GPIO3_C0
44 GPIO3_C1
46 GPIO3_C2 PWM14_M0
48 GPIO3_C3 PWM15_IR_M0
50 GPIO3_C4
52 GPIO3_C5
54 GPIO3_C6
56 GPIO3_C7
58 GPIO3_D0 PWM8_M2
60 GPIO3_D1 PWM9_M2
62 GPIO3_D2
64 GPIO3_D3 PWM10_M2
66 GPIO3_D4
68 GPIO3_D5 PWM11_IR_M3

Table 2.11: Mezzanine multiplex functions (cont.)

Pin Number GPIO Name CAN PCIE UART
14 GPIO3_A0
16 GPIO3_A1
18 GPIO3_A2 UART8_TX_M1
20 GPIO3_A3 UART8_RX_M1

continues on next page

v1.1.0
Page 10

Table 2.11 – continued from previous page
Pin Number GPIO Name CAN PCIE UART
22 GPIO3_A4 UART8_RSTN_M1
24 GPIO3_A5 UART8_CTSN_M1
26 GPIO3_A6
49 GPIO3_A7
27 GPIO3_B0
28 GPIO3_B1
30 GPIO3_B2
32 GPIO3_B3
34 GPIO3_B4
36 GPIO3_B5 CAN1_RX_M0
38 GPIO3_B6 CAN1_TX_M0
40 GPIO3_B7
42 GPIO3_C0
44 GPIO3_C1 PCIE30X2_BUTTON_RSTN_M1
46 GPIO3_C2
48 GPIO3_C3
50 GPIO3_C4 CAN2_RX_M0 UART5_TX_M1
52 GPIO3_C5 CAN2_TX_M0 PCIE30X4_WAKEN_M2 UART5_RX_M1
54 GPIO3_C6
56 GPIO3_C7 PCIE20X1_2_CLKREQN_M0
58 GPIO3_D0 PCIE20X1_2_WAKEN_M0 UART4_RX_M1
60 GPIO3_D1 PCIE20X1_2_PERSTN_M0 UART4_TX_M1
62 GPIO3_D2 PCIE30X2_CLKREQN_M2 UART9_RTSN_M2
64 GPIO3_D3 PCIE30X2_WAKEN_M2 UART9_CTSN_M2
66 GPIO3_D4 PCIE30X2_PERSTN_M2 UART9_RX_M2
68 GPIO3_D5 PCIE30X4_BUTTON_RSTN UART9_TX_M2

Table 2.12: Mezzanine multiplex functions (cont.)

Pin Number GPIO Name ETH MIPI_CAMERA_CLK SPI
14 GPIO3_A0 GMAC1_TXD2 SPI4_MISO_M1
16 GPIO3_A1 GMAC1_TXD3 SPI4_MOSI_M1
18 GPIO3_A2 GMAC1_RXD2 SPI4_CLK_M1
20 GPIO3_A3 GMAC1_RXD3 SPI4_CS0_M1
22 GPIO3_A4 GMAC1_TXCLK SPI4_CS1_M1
24 GPIO3_A5 GMAC1_RXCLK
26 GPIO3_A6 ETH1_REFCLKO_25M
49 GPIO3_A7 GMAC1_RXD0 MIPI_CAMERA2_CLK_M1
27 GPIO3_B0 GMAC1_RXD1 MIPI_CAMERA3_CLK_M1
28 GPIO3_B1 GMAC1_RXDV_CRS MIPI_CAMERA4_CLK_M1
30 GPIO3_B2 GMAC1_TXER
32 GPIO3_B3 GMAC1_TXD0
34 GPIO3_B4 GMAC1_TXD1
36 GPIO3_B5 GMAC1_TXEN
38 GPIO3_B6 GMAC1_MCLKINOUT
40 GPIO3_B7 GMAC1_PTP_REF_CLK SPI1_MOSI_M1
42 GPIO3_C0 GMAC_PPSTRIG SPI1_MISO_M1
44 GPIO3_C1 GMAC1_PPSCLK SPI1_CLK_M1
46 GPIO3_C2 GMAC1_MDC SPI1_CS0_M1
48 GPIO3_C3 GMAC1_MDIO SPI1_CS1_M1
50 GPIO3_C4 SPI3_CS0_M3
52 GPIO3_C5 SPI3_CS1_M3
54 GPIO3_C6 SPI3_MISO_M3
56 GPIO3_C7 SPI3_MOSI_M3
58 GPIO3_D0 SPI3_CLK_M3
60 GPIO3_D1

continues on next page

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 11

Table 2.12 – continued from previous page
Pin Number GPIO Name ETH MIPI_CAMERA_CLK SPI
62 GPIO3_D2
64 GPIO3_D3
66 GPIO3_D4
68 GPIO3_D5

Fig. 2.8: Mezzanine board dimensions (bottom view)

v1.1.0
Page 12

3 Mechanical Specification

Fig. 3.1: Mechanical dimensions

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 13

4 Software Overview

This chapter provides instructions for compiling and deploying the BSP (Board Support Package) software to
the board.

4.1 Supported Distributions

The following chapters describe how to build a disk image for:

• Debian: Section 5 Debian image guide

• Yocto: Section 6 Building a Yocto image

4.2 Compiling Linux Applications

The easiest option is to compile your applications directly on a board running Debian. Install the gcc package
and related utilities and you are good to go:

sudo apt-get install build-essential

The second option is to cross-compile your applications on a host PC. The compiler that is installed in Section
5.1 Prepare the host PC is suitable.

4.3 Known issues

1. The SD card cannot currently be automatically detected at runtime, so please insert it before booting the
Jaguar.

It is however possible to force a detection at runtime by running the following commands:

echo "fe2c0000.mmc" > /sys/bus/platform/drivers/dwmmc_rockchip/unbind

echo "fe2c0000.mmc" > /sys/bus/platform/drivers/dwmmc_rockchip/bind

v1.1.0
Page 14

5 Debian image guide
As opposed to Yocto, Debian does not provide a completely integrated build experience by itself. Linux kernel
and U-Boot have to be compiled manually and copied to the appropriate directory to be picked up by Debian
build system.

This chapter will go through all neccessary steps, finally building a complete image using the debos Debian
image builder. The result will be a fully-functional Debian system.

Alternatively, prebuilt images can be downloaded from https://downloads.embedded.cherry.de/jaguar .

At the time of writing this document, the following Debian image variants are available for Jaguar:

• Debian 12 Bookworm

Note: While Debian is a great tool for fast prototyping of your product, it is highly recommended to use a
distribution/image tailored to your need. This can be achieved by Yocto or Buildroot for example.

5.1 Prepare the host PC

The debos Debian OS Builder is only available for Debian and Debian-based distributions (like Ubuntu). This
chapter assumes you use Debian or a Debian-based distribution as the host PC.

Install packages for compiling the parts and the complete image:

sudo apt-get -y install debos git build-essential gcc-aarch64-linux-gnu make bison bc flex \

libssl-dev device-tree-compiler python3-dev python3-pkg-resources swig fdisk \

bmap-tools python-is-python3 python3-setuptools python3-pyelftools

As debos internally uses kvm virtualization, your user must be a member of the kvm group:

sudo adduser "$(id -un)" kvm

Log out and back for the change to take affect. Then verify that kvm is listed in your groups:

id -Gn

Note: If you are not using Debian distribution on your host PC you need to use podman to build the debos
image:

sudo apt-get install podman

5.2 Get the ATF

Get the Arm Trusted Firmware as follows:

Set up cross-compilation

export ARCH=arm64

export CROSS_COMPILE=aarch64-linux-gnu-

Download the source code

git clone https:^//github.com/rockchip-linux/rkbin

cd rkbin ^|| return

(continues on next page)

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 15

https://downloads.embedded.cherry.de/jaguar

(continued from previous page)
Tag linux-5.10-gen-rkr4.1

git checkout "1356c978"

export RKBIN_FOLDER="$PWD"

export BL31="$RKBIN_FOLDER/bin/rk35/rk3588_bl31_v1.38.elf"

export ROCKCHIP_TPL="$RKBIN_FOLDER/bin/rk35/rk3588_ddr_lp4_2112MHz_lp5_2736MHz_v1.11.bin"

shellcheck disable=SC2103 # we want to export variables, not possible within subshell

cd ^..

Make the baudrate match our U-Boot

sed -i 's/uart baudrate=/uart baudrate=115200/' rkbin/tools/ddrbin_param.txt

rkbin/tools/ddrbin_tool rkbin/tools/ddrbin_param.txt "$ROCKCHIP_TPL"

This step should take under 1 minute total.

5.3 Compile U-Boot

Note: Variables BL31 and ROCKCHIP_TPLmust be already set as described in Section 5.2 Get the ATF .

Get the source code and compile the U-Boot bootloader as follows:

Set up cross-compilation

export ARCH=arm64

export CROSS_COMPILE=aarch64-linux-gnu-

Download the source code

git clone https:^//git.embedded.cherry.de/jaguar-u-boot.git

(

cd jaguar-u-boot ^|| return

Load u-boot config

make jaguar-rk3588_defconfig

Build U-Boot

make -j"$(nproc)"

)

Make the resulting file available to later steps

export JAGUAR_UBOOT_DIR="$PWD/jaguar-u-boot"

This step should take about 1 minute total.

5.4 Compile the Linux kernel

Get the source code and compile the Linux kernel as follows:

Set up cross-compilation

export ARCH=arm64

export CROSS_COMPILE=aarch64-linux-gnu-

Download the source code

git clone https:^//git.embedded.cherry.de/jaguar-linux.git

(

cd jaguar-linux ^|| return

Compile

make jaguar-rk3588_defconfig

(continues on next page)

v1.1.0
Page 16

(continued from previous page)
make -j"$(nproc)"

^## Make sure there are no modules from older builds, otherwise may pollute rootfs

^## if using debos-recipes instructions.

rm ^--recursive ^--force overlay/

make -j"$(nproc)" INSTALL_MOD_PATH=overlay modules_install

)

Make the resulting files available to later steps

export JAGUAR_LINUX_DIR="$PWD/jaguar-linux"

The time required for this step heavily depends on your internet connection and CPU power. On a quad-core
2.9GHz machine with an 1Gb/s internet connection, it takes about 20 minutes total.

Warning: It is essential the kernel modules installed on the system are built from the exact same sources
as the kernel Image itself or the modules will fail to be detected by the kernel.

Note: One can install new modules without needing to recompile the debos image entirely by running the
following command:

export IP=10.11.12.13 # set to the IP address of the device

rsync ^--delete ^--recursive overlay/lib/modules/ root@"$IP":/lib/modules

Update the kernel Image if there was some change made to it so that it will find the new modules upon reboot.

Reboot for the new modules to be loaded.

5.5 Building the debos image

5.5.1 Prepare required components

Note: The variables JAGUAR_UBOOT_DIR and JAGUAR_LINUX_DIR must be already set as described in Section
5.3 Compile U-Boot and Section 5.4 Compile the Linux kernel, respectively.

Get the source code for the debos recipe and copy the necessary components that were built in the previous
steps:

Download the source code

git clone https:^//git.embedded.cherry.de/debos-recipes.git

cd debos-recipes ^|| return

Copy Linux binaries into the ``jaguar`` folder

cp "$JAGUAR_LINUX_DIR"/arch/arm64/boot/Image jaguar/overlay/boot/

^## Match dtb and dtbo

cp "$JAGUAR_LINUX_DIR"/arch/arm64/boot/dts/rockchip/rk3588-jaguar*.dtb* jaguar/overlay/boot/

rm ^--recursive ^--force jaguar/overlay/lib/modules

mkdir ^--parents jaguar/overlay/lib/modules

cp ^--archive "$JAGUAR_LINUX_DIR"/overlay/lib/modules/ jaguar/overlay/lib/

^## Remove known problematic symlinks as debos would dereference them

rm jaguar/overlay/lib/modules/*/build

rm jaguar/overlay/lib/modules/*/source

Copy U-Boot binaries into the ``jaguar`` folder

cp "$JAGUAR_UBOOT_DIR"/u-boot-rockchip.bin jaguar/

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 17

5.5.2 Build a complete image

Depending on your host PC and internet connection, this step should complete in about 5-10 minutes.

The resulting image is a file called sdcard-jaguar-debos-bookworm.XXX.YYY.img and, for convenience, the
symlink sdcard-jaguar-debos-bookworm.img that always points to the latest version.

Debian 12 Bookworm

Build the image using debos

build_board=jaguar ./build.sh

Or: Build the image using podman (for host PCs not using Debian)

build_board=jaguar debos_host=podman ./build.sh

Make the resulting image available to later steps

export SDCARD_IMG="$PWD/sdcard-jaguar-debos-bookworm.img"

Note: When running inside a virtual machine that does not support nesting, you may get an error like this:

open /dev/kvm: no such file or directory

In this case, prepend debos_host=chroot to the build.sh command, resulting in:

debos_host=chroot build_board=jaguar ./build.sh

The debos_host=chrootmode uses sudo internally as it requires root permissions.

v1.1.0
Page 18

6 Building a Yocto image
The Yocto Project is an open-source project that helps building Linux-based distributions, mainly for embeded-
ded products. CHERRY provides aminimal BSP layer to allow building Yocto images for the company’smodules.
An extended layer is also provided for a less bare experience, see instructions in Section 6.3 Extended meta
layer. Upon request, access can be given to a more featureful “demonstration” layer which provides hardware
and software validation scripts as well as demo applications.

This user guide does not aim at getting the user familiar with development with the Yocto Project but rather
help them setup their build environment to create a basic Yocto image that can be used on one of CHERRY
modules.

The Yocto project provides an open source Linux build framework, which allows to create customized build
environments for embedded systems.

Yocto consists of the following parts:

• The Yocto Project tools,

• Reference Linux distribution (Poky),

• Build system (co-maintained with OpenEmbedded),

There exists extensive documentation for the Yocto Project and BitBake.

The Yocto Project releases a new version twice a year and some versions are maintained for a longer time when
marked as LTS (Long-Term Support). Such is the case of Kirkstone (4.0), supported until at least April 2024.
CHERRY highly recommend to use LTS versions and update to a newer version once its support has reached
end-of-life, to benefit from bug fixes, security fixes, miscellaneous improvements and additional features.

6.1 Prerequisites

While the Yocto Project supports many different build systems, CHERRY currently only tests building on Debian
11 (Bullseye).

The required packages for Debian are listed in the documentation and can be installed with the following com-
mand:

sudo apt-get install -y ^--no-install-recommends gawk wget git diffstat unzip \

texinfo gcc build-essential chrpath socat cpio python3 python3-pip python3-venv \

python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 \

libegl1-mesa libsdl1.2-dev xterm python3-subunit mesa-common-dev zstd \

liblz4-tool file

6.2 BSP meta layer

The Yocto Project BSP meta layer can be found at https://git.embedded.cherry.de/yocto-layers/
meta-theobroma-systems-bsp.git/.

It contains the minimal configuration and recipe append files (bbappend) necessary to build a minimal working
image. It is meant to be a base upon which to build and thus many tools are purposefully missing.

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 19

https://www.yoctoproject.org/
https://docs.yoctoproject.org/kirkstone
https://docs.yoctoproject.org/bitbake/2.0
https://docs.yoctoproject.org/kirkstone/ref-manual/system-requirements.html#supported-linux-distributions
https://docs.yoctoproject.org/kirkstone/ref-manual/system-requirements.html#ubuntu-and-debian
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git/
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git/

6.2.1 Initial setup

Clone the BSP meta layer and its dependencies from a new directory called yocto:

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git \

-b kirkstone

git clone https:^//git.yoctoproject.org/poky -b kirkstone-4.0.10

git clone https:^//git.yoctoproject.org/meta-arm -b yocto-4.0.2

git clone https:^//git.yoctoproject.org/meta-rockchip -b kirkstone

git clone https:^//git.openembedded.org/meta-openembedded -b kirkstone

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

└── poky

Note: It is essential that the Yocto layers are checked out on a branch that supports the same release as the
others, otherwise theremay be some unexpected issues. With the aforementioned instructions, the layers have
been checked out to a branch supporting the Yocto Project Kirkstone (4.0) release.

One can check if a branch supports a release by looking into conf/layer.conf and look for the LAY-

ERSERIES_COMPAT_* variable. All layers should have the same one in common, here “kirkstone”.

6.2.2 Initializing build environment

Once the layers have been properly cloned in their appropriate branch, the build environment needs to be
initialized. This can be done by running the following command:

shellcheck disable=SC3046,SC1091

source poky/oe-init-build-env build

This will initialize the build environment by making the bitbake build tool available in the current shell and
creating a build directory where temporary and final build artifacts will be stored.

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── build

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

└── poky

The first time the command is run, it’ll create a new build directory called build and add the appropriate
configuration files. On the later runs, if the directory still exists, the command will only configure the terminal
environment and not change anything in the build directory. This makes it perfectly safe to run the command
multiple times, from different terminals for example.

Note: Once the current terminal is closed or a new one is opened, this command should be re-executed to be
able to interact again with the Yocto Project tools.

v1.1.0
Page 20

The Yocto Project then needs to be configured to include layers to find new recipes or configuration files, which
is essential to build new pieces of software or compile for a specific hardware target system.

This can be done with the bitbake-layers tool:

bitbake-layers add-layer ^../meta-arm/meta-arm-toolchain

bitbake-layers add-layer ^../meta-arm/meta-arm

bitbake-layers add-layer ^../meta-rockchip

bitbake-layers add-layer ^../meta-openembedded/meta-oe

bitbake-layers add-layer ^../meta-openembedded/meta-python

bitbake-layers add-layer ^../meta-theobroma-systems-bsp

6.2.3 Building a minimal image

To build a bootable artifact, BitBake will be called with the specified machine and target image:

MACHINE="jaguar" bitbake core-image-minimal

Note: Technically speaking, the MACHINE variable could be set in build/conf/local.conf file once and for all.
If possible, CHERRY recommends passing the variable explicitly in the command directly as this makes it more
visible to the user and also allows to easily build for multiple machines without modifying a file in-between.

The build process can take several hours depending on the capabilities of the build machine and the user’s
Internet connection.

Note: If the Bitbake process needs to be stopped for any reason, a SIGINT (Ctrl + c) signal can be sent once.
Bitbake will gracefully close down upon reception of this signal. This graceful shutdown can take a lot of time
depending on the tasks that are currently being executed. It is highly recommended to not send this signal
more than once, failing to do so may hinder next Bitbake commands.

The artifacts can be found after some time in build/tmp/deploy/images/jaguar/ directory. A flashable image
is one whose extension is .wic, e.g. core-image-minimal-jaguar-20221021134027.rootfs.wic.

Make the resulting image available for later steps:

export SDCARD_IMG="$PWD/build/tmp/deploy/images/jaguar/core-image-minimal-jaguar.wic"

6.2.4 Building with kas

kas is a setup tool for Bitbake-based projects, such as the Yocto Project, which aims to replace the commands
listed above for a simpler, more automated, setup and creation of images.

CHERRY provides a kas configuration file kas-theobroma.yml in the BSP meta layer for convenience.

kas can be installed on the build machine with the following command:

sudo apt-get install -y ^--no-install-recommends kas

Note: It is also available as a Python package and installable with:

python3 -m venv venv

shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

The Section 6.2.1 Initial setup and Section 6.2.2 Initializing build environment can then be replaced by the fol-
lowing two commands:

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 21

https://github.com/siemens/kas
https://pypi.org/project/kas/

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git \

-b kirkstone

kas checkout meta-theobroma-systems-bsp/kas-theobroma.yml

The Section 6.2.3 Building a minimal image can now be replaced with:

KAS_MACHINE="jaguar" kas build meta-theobroma-systems-bsp/kas-theobroma.yml

Note: kas is also available in an OCI container form on GitHub container registry.

It is still recommended to install kas through pip but then use its kas-container wrapper script to start the
container properly. E.g. to replace the last command to build an image with kas one can call this instead:

python3 -m venv venv

shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

export KAS_IMAGE_VERSION="4.0"

export KAS_MACHINE="jaguar"

kas-container build meta-theobroma-systems-bsp/kas-theobroma.yml

6.3 Extended meta layer

The Yocto Project extended layer can be found at https://git.embedded.cherry.de/yocto-layers/
meta-theobroma-systems-extended.git/.

In addition to the minimal features, this layer includes the network manager, and many more features will be
added soon.

6.3.1 Initial setup

Clone the Extended layer and its dependencies from a new directory called yocto:

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git \

-b kirkstone

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-bsp.git \

-b kirkstone

git clone https:^//git.yoctoproject.org/poky -b kirkstone-4.0.10

git clone https:^//git.yoctoproject.org/meta-arm -b yocto-4.0.2

git clone https:^//git.yoctoproject.org/meta-rockchip -b kirkstone

git clone https:^//git.openembedded.org/meta-openembedded -b kirkstone

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

├── meta-theobroma-systems-extended

└── poky

v1.1.0
Page 22

https://ghcr.io/siemens/kas/kas
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git/
https://git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git/

Note: It is essential that the Yocto layers are checked out on a branch that supports the same release as the
others, otherwise theremay be some unexpected issues. With the aforementioned instructions, the layers have
been checked out to a branch supporting the Yocto Project Kirkstone (4.0) release.

One can check if a branch supports a release by looking into conf/layer.conf and look for the LAY-

ERSERIES_COMPAT_* variable. All layers should have the same one in common, here “kirkstone”.

6.3.2 Initializing build environment

Once the layers have been properly cloned in their appropriate branch, the build environment needs to be
initialized. This can be done by running the following command:

shellcheck disable=SC3046,SC1091

source poky/oe-init-build-env build

This will initialize the build environment by making the bitbake build tool available in the current shell and
creating a build directory where temporary and final build artifacts will be stored.

The following directory layout should be observed:

$ tree -L 1 yocto/

yocto

├── build

├── meta-arm

├── meta-openembedded

├── meta-rockchip

├── meta-theobroma-systems-bsp

├── meta-theobroma-systems-extended

└── poky

The first time the command is run, it’ll create a new build directory called build and add the appropriate
configuration files. On the later runs, if the directory still exists, the command will only configure the terminal
environment and not change anything in the build directory. This makes it perfectly safe to run the command
multiple times, from different terminals for example.

Note: Once the current terminal is closed or a new one is opened, this command should be re-executed to be
able to interact again with the Yocto Project tools.

The Yocto Project then needs to be configured to include layers to find new recipes or configuration files, which
is essential to build new pieces of software or compile for a specific hardware target system.

This can be done with the bitbake-layers tool:

bitbake-layers add-layer ^../meta-arm/meta-arm-toolchain

bitbake-layers add-layer ^../meta-arm/meta-arm

bitbake-layers add-layer ^../meta-rockchip

bitbake-layers add-layer ^../meta-openembedded/meta-oe

bitbake-layers add-layer ^../meta-openembedded/meta-python

bitbake-layers add-layer ^../meta-openembedded/meta-networking

bitbake-layers add-layer ^../meta-theobroma-systems-bsp

bitbake-layers add-layer ^../meta-theobroma-systems-extended

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 23

6.3.3 Building an image

To build a bootable artifact, BitBake will be called with the specified machine and target image:

MACHINE="jaguar" bitbake theobroma-extended-image

Note: Technically speaking, the MACHINE variable could be set in build/conf/local.conf file once and for all.
If possible, CHERRY recommends passing the variable explicitly in the command directly as this makes it more
visible to the user and also allows to easily build for multiple machines without modifying a file in-between.

The build process can take several hours depending on the capabilities of the build machine and the user’s
Internet connection.

Note: If the Bitbake process needs to be stopped for any reason, a SIGINT (Ctrl + c) signal can be sent once.
Bitbake will gracefully close down upon reception of this signal. This graceful shutdown can take a lot of time
depending on the tasks that are currently being executed. It is highly recommended to not send this signal
more than once, failing to do so may hinder next Bitbake commands.

The artifacts can be found after some time in build/tmp/deploy/images/jaguar/ directory. A flashable image
is one whose extension is .wic, e.g. theobroma-extended-image-jaguar-20221021134027.rootfs.wic.

Make the resulting image available for later steps:

export SDCARD_IMG="$PWD/build/tmp/deploy/images/jaguar/theobroma-extended-image-jaguar.wic"

6.3.4 Building with kas

kas is a setup tool for Bitbake-based projects, such as the Yocto Project, which aims to replace the commands
listed above for a simpler, more automated, setup and creation of images.

CHERRY provides a kas configuration file kas-theobroma.yml in the BSP meta layer for convenience.

kas can be installed on the build machine with the following command:

sudo apt-get install -y ^--no-install-recommends kas

Note: It is also available as a Python package and installable with:

python3 -m venv venv

shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

The Section 6.3.1 Initial setup and Section 6.3.2 Initializing build environment can then be replaced by the fol-
lowing two commands:

mkdir yocto

cd yocto ^|| return

git clone https:^//git.embedded.cherry.de/yocto-layers/meta-theobroma-systems-extended.git \

-b kirkstone

kas checkout meta-theobroma-systems-extended/kas-theobroma.yml

The Section 6.3.3 Building an image can now be replaced with:

KAS_MACHINE="jaguar" kas build meta-theobroma-systems-extended/kas-theobroma.yml

Note: kas is also available in an OCI container form on GitHub container registry.

v1.1.0
Page 24

https://github.com/siemens/kas
https://pypi.org/project/kas/
https://ghcr.io/siemens/kas/kas

It is still recommended to install kas through pip but then use its kas-container wrapper script to start the
container properly. E.g. to replace the last command to build an image with kas one can call this instead:

python3 -m venv venv

shellcheck disable=SC3046,SC1091

source venv/bin/activate

python3 -m pip install kas==4.0

export KAS_IMAGE_VERSION="4.0"

export KAS_MACHINE="jaguar"

kas-container build meta-theobroma-systems-extended/kas-theobroma.yml

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 25

7 Deploy a disk image
This chapter describes how to write a disk image of the Debian 12 bookworm variant as generated in the pre-
vious chapter.

Note: The variable SDCARD_IMGmust be already set as described in respective chapter.

Warning: Avoid having the disk image on both the SD Card and the internal eMMC of the module.

As the Linux kernel on the module uses PARTLABEL and PARTUUID to identify partitions to mount, it will be
unpredictable whether the SD Card or the internal eMMC is used.

7.1 Deploy on SD Card

Insert an SD card into the host PC and check dmesg -w to find out the device name that was used.

To flash the image on an SD card, bmaptool can be used, it is both faster and safer than a traditional dd. For
that, the .bmap companion file, automatically built by the Yocto Project or build.sh debos-recipes wrapper
script, should be in the same directory as the SDCARD_IMG artifact.

Then run the following command, with /dev/sdX replaced by the block device representing the user’s SD card:

sudo bmaptool copy "$SDCARD_IMG" /dev/sdX

7.2 Deploy on internal eMMC

7.2.1 Compile rkdeveloptool

To write the image directly onto the on-board eMMC, the flashing tool rkdeveloptool is used, and it must be
compiled on the host PC:

Install compile dependencies

sudo apt-get -y install git libudev-dev libusb-1.0-0-dev dh-autoreconf pkg-config \

build-essential

Download rkdeveloptool source code

git clone https:^//github.com/rockchip-linux/rkdeveloptool.git

cd rkdeveloptool ^|| return

Compile rkdeveloptool

autoreconf -i

CPPFLAGS=-Wno-format-truncation ./configure

make

Download miniloaders used for flashing

git clone https:^//github.com/rockchip-linux/rkbin.git tools/rk_tools

Build miniloader binaries

(

cd tools/rk_tools/ ^|| return

Tag linux-5.10-gen-rkr4.1

git checkout "1356c978"

./tools/boot_merger RKBOOT/RK3588MINIALL.ini

(continues on next page)

v1.1.0
Page 26

https://github.com/intel/bmap-tools

(continued from previous page)
)

Make the resulting files available to later steps

export RKDEVELOPTOOL_DIR="$PWD/tools/rk_tools/"

This step should take about 1 minute total.

7.2.2 Enter USB flashing mode

Connect a USB-C cable between the USB P11 Download port (see Fig. 2.4 Buttons and Download USB Type-C
port) and a USB port of your host PC.

Make sure there is no SD card inserted into the board.

Push the BOOT SW button (see Fig. 2.4 Buttons and Download USB Type-C port).

Push the Reset button and release the BOOT SW button.

The lsusb command on your host PC should return the following:

$ lsusb -d 2207:350b

Bus xxx Device 0xx: ID 2207:350b Fuzhou Rockchip Electronics Company

7.2.3 Flash the eMMC

To write the image file path stored in the variable SDCARD_IMG to the on-board eMMC, run:

cd "$RKDEVELOPTOOL_DIR" ^|| return

sudo ./rkdeveloptool db tools/rk_tools/rk3588_spl_loader_v* ^&& sleep 1

sudo ./rkdeveloptool wl 0 "$SDCARD_IMG"

sudo ./rkdeveloptool rd

This step should take about 1 minute for the Debian image.

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 27

8 Companion controller features

This chapter describes the companion controller (Mule ATtiny) features.

8.1 How to flash Mule-ATtiny

The ATtiny can be flashed through the UPDI lines, from the running system on Jaguar (No additional hardware
required). For convenience, mule-attiny.sh tool is available for flashing the Mule ATtiny microcontroller. The
tool is available here: https://git.embedded.cherry.de/som-tools.git/tree/mule-attiny.

8.1.1 Requirements

• avrdude tool (minimum v7.1)

8.1.2 Install avrdude

apt-get install avrdude

8.1.3 Flashing Mule ATtiny

MULE_FIRMWARE="/path/to/mule-ATtiny816-xxxxxxx.hex"

./mule-attiny.sh ^--flash "$MULE_FIRMWARE"

Note: The above commands should be run with root privileges.

Note: It is highly recommended that one reboots the main SoC interacting with the companion microcontroller
after flashing to make sure device drivers are properly initialized.

v1.1.0
Page 28

https://git.embedded.cherry.de/som-tools.git/tree/mule-attiny

9 Serial Number
Each Jaguar has a unique serial number that can be read by software.

In U-Boot, the serial number is contained in the environment variable serial#. You can print it using the
command:

printenv serial#

Under Linux, it is represented by a simple text file in /sys:

cat /sys/firmware/devicetree/base/serial-number

The serial number is fixed in hardware (derived from the SoC CPU ID) and cannot be modified.

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 29

10 Contact
Cherry Embedded Solutions GmbH
Seestadtstraße 27
1220 Vienna
Austria

Inquiries: sales-es@cherry.de
Technical Support: support-es@cherry.de

v1.1.0
Page 30

mailto:sales-es@cherry.de
mailto:support-es@cherry.de

11 Revision History

Date Revision Major changes
Nov 27, 2023 v1.0.0 First release
Dec 18, 2023 v1.0.1 recalled version
Feb 14, 2024 v1.0.2 Updated flashing instructions for companionmicrocontroller to use

wrapper shell script
Replaced dd flashing instructions with bmaptool
Updated pip instructions for Bookworm
Added yocto directory creation
Updated kas container instructions
Rephrased layer version requirement
Update instructions for U-Boot v2024.01

Apr 02, 2024 v1.1.0 Add instructions on how to use kernel modules in debos
Changed shell code snippets to pass shellcheck
Theobroma Systems is now CHERRY Embedded Solutions

JAGUAR SBC-RK3588-AMR User Manual
© Cherry Embedded Solutions GmbH

v1.1.0
Page 31

	Introduction
	Device Overview
	Precautions

	Interfaces
	Power Supply
	USB Serial Console
	Buttons
	Boot Order

	FAN
	CAN
	RS-485
	Battery
	Mezzanine Connector

	Mechanical Specification
	Software Overview
	Supported Distributions
	Compiling Linux Applications
	Known issues

	Debian image guide
	Prepare the host PC
	Get the ATF
	Compile U-Boot
	Compile the Linux kernel
	Building the debos image
	Prepare required components
	Build a complete image
	Debian 12 Bookworm

	Building a Yocto image
	Prerequisites
	BSP meta layer
	Initial setup
	Initializing build environment
	Building a minimal image
	Building with kas

	Extended meta layer
	Initial setup
	Initializing build environment
	Building an image
	Building with kas

	Deploy a disk image
	Deploy on SD Card
	Deploy on internal eMMC
	Compile rkdeveloptool
	Enter USB flashing mode
	Flash the eMMC

	Companion controller features
	How to flash Mule-ATtiny
	Requirements
	Install avrdude
	Flashing Mule ATtiny

	Serial Number
	Contact
	Revision History

